Enzymatic hydrolysis of food waste for bioethanol production
DOI:
https://doi.org/10.5327/Z2176-94781978Palavras-chave:
bioenergia; biocombustíveis; economia circular; resíduos alimentares.Resumo
A preocupação com a sustentabilidade ambiental e o uso racional dos recursos naturais impulsiona o desenvolvimento de novas tecnologias para melhor utilizar fontes de energia, culminando no uso de resíduos para a produção de biocombustíveis. Essa abordagem é estratégica, pois o uso de resíduos agroindustriais e alimentares está alinhado ao conceito de bioeconomia circular e segurança alimentar, permitindo a valorização dos resíduos e a redução das responsabilidades ambientais. O bioetanol destaca-se como o biocombustível mais promissor derivado de resíduos alimentares, considerando sua composição química rica em carboidratos e açúcares fermentáveis. A conversão biotecnológica da biomassa em bioetanol requer etapas de pré-tratamento para facilitar a ação enzimática durante o processo de hidrólise, estágio crucial para a liberação de açúcares. No entanto, ressalta-se a necessidade de otimizar os processos enzimáticos, especialmente em relação aos intervalos de pH e temperatura para a atividade enzimática, a fim de garantir eficiência na conversão da biomassa em bioetanol. O objetivo é compreender os processos envolvidos na hidrólise enzimática de resíduos orgânicos. A revisão da literatura incluiu estudos com avanços recentes na hidrólise enzimática de resíduos alimentares para a produção sustentável de bioetanol, utilizando as palavras-chave “Biomassa”, “Hidrólise enzimática”, “Bioetanol” e “Resíduos alimentares” ou “Resíduos alimentares”. A hidrólise de resíduos alimentares para a produção de bioetanol destaca a necessidade de seleção das técnicas de pré-tratamento mais eficientes e sustentáveis, visando minimizar a geração de subprodutos enquanto utiliza totalmente a matéria-prima. Além disso, destaca-se o uso de diferentes classes de enzimas em consórcio durante os processos de produção.
Downloads
Referências
Abdullah, B.; Muhammad, S.A.F.A.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A. N.; Aziz, M.M.A., 2019. Fourth generation biofuel: a review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, v. 107, 37-50. https://doi.org/10.1016/j.rser.2019.02.018
Álvarez, C.; Reyes‐Sosa, F.M.; Díez, B., 2016. Enzymatic hydrolysis of biomass from wood. Microbial Biotechnology, v. 9, (2), 149-156. https://doi.org/10.1111/1751-7915.12346
Angelo, A.C.M.; Saraiva, A.B.; Clímaco, J.C.N.; Infante, C.E.; Valle, R., 2017. Life Cycle Assessment and Multi-criteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, v. 143, 744-756. https://doi.org/10.1016/j.jclepro.2016.12.049
Anwar Saeed, M.; Ma, H.; Yue, S.; Wang, Q.; Tu, M., 2018. Concise review on ethanol production from food waste: development and sustainability. Environmental Science and Pollution Research, v. 25, (29), 28851-28863. https://doi.org/10.1007/s11356-018-2972-4
Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Böhmdorfer, S.; Siebenhandl-Ehn, S.; Novalin, S.; Kneifel, W., 2014. Wheat bran-based biorefinery 2: Valorization of products. LWT-Food Science and Technology, v. 56, (2), 222-231. https://doi.org/10.1016/j.lwt.2013.12.003
Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L., 2014. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy, v. 123, 143-156. https://doi.org/10.1016/j.apenergy.2014.02.035
Arumugam, A.; Malolan, V.V.; Ponnusami, V., 2021. Contemporary pretreatment strategies for bioethanol production from corncobs: a comprehensive review. Waste and Biomass Valorization, v. 12, (2), 577-612. https://doi.org/10.1007/s12649-020-00983-w
Atitallah, I.B.; Antonopoulou, G.; Ntaikou, I.; Alexandropoulou, M.; Nasri, M.; Mechichi, T.; Lyberatos, G., 2019. On the evaluation of different saccharification schemes for enhanced bioethanol production from potato peels waste via a newly isolated yeast strain of Wickerhamomyces anomalus. Bioresource Technology, v. 289, 121614. https://doi.org/10.1016/j.biortech.2019.121614
Ávila, P.F.; Forte, M.B.; Goldbeck, R., 2018. Evaluation of the chemical composition of a mixture of sugarcane bagasse and straw after different pretreatments and their effects on commercial enzyme combinations for the production of fermentable sugars. Biomass and Bioenergy, v. 116, 180-188. https://doi.org/10.1016/j.biombioe.2018.06.015
Banu, J.R.; Merrylin, J.; Usman, T.M.M.; Kannah, R.Y.; Gunasekaran, M.; Kim, S.; Kumar, G., 2020. Impact of pretreatment on food waste for biohydrogen production: a review. International Journal of Hydrogen Energy, v. 45, (36), 18211-18225. https://doi.org/10.1016/j.ijhydene.2019.09.176
Batool, F.; Kurniawan, T. A.; Mohyuddin, A.; Othman, M. H. D.; Aziz, F.; Al-Hazmi, H.; Goh, H.H.; Anouzla, A., 2023. Environmental impacts of food waste management technologies: A critical review of life cycle assessment (LCA) studies. Trends in Food Science & Technology, 104287. https://doi.org/10.1016/j.tifs.2023.104287
Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S., 2014. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, v. 36, 91-106. https://doi.org/10.1016/j.rser.2014.04.047
Behera, S.S.; Ray, R.C., 2016. Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. International Journal of Biological Macromolecules, v. 86, 656-669. https://doi.org/10.1016/j.ijbiomac.2015.10.090
Berlin, A.; Maximenko, V.; Bura, R.; Kang, K.; Gilkes, N.; Saddler, J., 2006. A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering, v. 93, (5), 880-886. https://doi.org/10.1002/bit.20783
Cai, C.; Zhang, C.; Li, N.; Liu, H.; Xie, J.; Lou, H.; Pan, X.; Zhu, J.Y.; Wang, F., 2023. Changing the role of lignin in enzymatic hydrolysis for a sustainable and efficient sugar platform. Renewable and Sustainable Energy Reviews, v. 183, 113445. https://doi.org/10.1016/j.rser.2023.113445
Caldeira, C.; Vlysidis, A.; Fiore, G.; De Laurentiis, V.; Vignali, G.; Sala, S., 2020. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresource Technology, v. 312, 123575. https://doi.org/10.1016/j.biortech.2020.123575
Calof, J.; Søilen, K. S.; Klavans, R.; Abdulkader, B.; El Moudni, I., 2022. Understanding the structure, characteristics, and future of collective intelligence using local and global bibliometric analyses. Technological Forecasting and Social Change, v. 178, 121561. https://doi.org/10.1016/j.techfore.2022.121561
Cekmecelioglu, D.; Uncu, O.N., 2013. Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Management, v. 33, (3), 735-739. https://doi.org/10.1016/j.wasman.2012.08.003
Chen, H.; Shen, H.; Su, H.; Chen, H.; Tan, F.; Lin, J., 2017. High-efficiency bioconversion of kitchen garbage to biobutanol using an enzymatic cocktail procedure. Bioresource Technology, v. 245, (Part A), 1110-1121. https://doi.org/10.1016/j.biortech.2017.09.056
Chen, J.; Wang, X.; Zhang, B.; Yang, Y.; Song, Y.; Zhang, F.; Liu, B.; Zhou, Y.; Yi, Y.; Shan, Y.; Lü, X., 2021. Integrating enzymatic hydrolysis into subcritical water pretreatment optimization for bioethanol production from wheat straw. Science of the Total Environment, v. 770, 145321. https://doi.org/10.1016/j.scitotenv.2021.145321
Choi, I.S.; Lee, Y.G.; Khanal, S.K.; Park, B.J.; Bae, H.J., 2015. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Applied Energy, v. 140, 65-74. https://doi.org/10.1016/j.apenergy.2014.11.070
Dahiya, S.; Kumar, A.N.; Sravan, J.S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V., 2018. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology, v. 248, 2-12. https://doi.org/10.1016/j.biortech.2017.07.176
Das, N.; Jena, P.K.; Padhi, D.; Kumar Mohanty, M.; Sahoo, G., 2021. A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Conversion and Biorefinery, 1-25. https://doi.org/10.1007/s13399-021-01294-3
Dawson, L.; Boopathy, R., 2007. Use of post-harvest sugarcane residue for ethanol production. Bioresource Technology, v. 98, (9), 1695-1699. https://doi.org/10.1016/j.biortech.2006.07.029
De Castro, R.J.S.; Sato, H.H., 2015. Biologically active peptides: processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, v. 74, 185-198. https://doi.org/10.1016/j.foodres.2015.05.013
Desai, R.P.; Dave, D.; Suthar, S.A.; Shah, S.; Ruparelia, N.; Kikani, B.A., 2021. Immobilization of α-Amylase on GO-Magnetite Nanoparticles for the Production of High Maltose Containing Syrup. International Journal of Biological Macromolecules, v. 169, 228-238. https://doi.org/10.1016/j.ijbiomac.2020.12.101
Dhiman, S.; Mukherjee, G., 2021. Present scenario and future scope of food waste to biofuel production. Journal of Food Process Engineering, v. 44, (2), e13594. https://doi.org/10.1111/jfpe.13594
Di Bitonto, L.; Antonopoulou, G.; Braguglia, C.; Campanale, C.; Gallipoli, A.; Lyberatos, G.; Ntaikou, I. ; Pastore, C., 2018. Lewis-Brønsted acid catalysed ethanolysis of the organic fraction of municipal solid waste for efficient production of biofuels. Bioresource Technology, v. 266, 297-305. https://doi.org/10.1016/j.biortech.2018.06.110
Du, J.; Liang, J.; Gao, X.; Liu, G.; Qu, Y., 2020. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods. Bioresource Technology, v. 295, 122272. https://doi.org/10.1016/j.biortech.2019.122272
Esteban, J.; Ladero, M., 2018. Food waste as a source of value‐added chemicals and materials: a biorefinery perspective. International Journal of Food Science & Technology, v. 53, (5), 1095-1108. https://doi.org/10.1111/ijfs.13726
Gao, Y.; Remón, J.; Matharu, A. S., 2021. Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review. Green Chemistry, v. 23, (10), 3502-3525. https://doi.org/10.1039/D1GC00623A
Hafid, H.S.; Shah, U.K.M.; Baharudin, A.S., 2015. Enhanced fermentable sugar production from kitchen waste using various pretreatments. Journal of Environmental Management, v. 156, 290-298. https://doi.org/10.1016/j.jenvman.2015.03.045
Hafid, H.S.; Nor'aini, A.R.; Mokhtar, M.N.; Talib, A.T.; Baharuddin, A.S.; Kalsom, M.S.U., 2017. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Management, v. 67, 95-105. https://doi.org/10.1016/j.wasman.2017.05.017
Hafid, H.S.; Omar, F.N.; Abdul Rahman, N.A.; Wakisaka, M., 2021. Innovative conversion of food waste into biofuel in integrated waste management system. Critical Reviews in Environmental Science and Technology, 1-40. https://doi.org/10.1080/10643389.2021.1923976
Han, W.; Liu, Y.; Xu, X.; Huang, J.; He, H.; Chen, L.; Qiu, S.; Tang, J.; Hou, P. 2020. Bioethanol production from waste hamburger by enzymatic hydrolysis and fermentation. Journal of Cleaner Production, v. 264, 121658. https://doi.org/10.1016/j.jclepro.2020.121658
Hashem, M.; Asseri, T.Y.; Alamri, S.A.; Alrumman, S.A., 2019. Feasibility and sustainability of bioethanol production from starchy restaurants’ bio-wastes by new yeast strains. Waste and Biomass Valorization, v. 10, 1617-1626. https://doi.org/10.1007/s12649-017-0184-7
Hatakka, A.I., 1983. Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. European Journal of Applied Microbiology and Biotechnology, v. 18, (6), 350-357. https://doi.org/10.1007/BF00504744
Ilić, N.; Davidović, S.; Milić, M.; Rajilić-Stojanović, M.; Pecarski, D.; Ivančić-Šantek, M.; Mihajlovski, K.; Dimitrijević-Branković, S., 2022. Valorization of lignocellulosic wastes for extracellular enzyme production by novel Basidiomycetes: screening, hydrolysis, and bioethanol production. Biomass Conversion and Biorefinery, v. 13, 1-12. https://doi.org/10.1007/s13399-021-02145-x
Jarunglumlert, T.; Bampenrat, A.; Sukkathanyawat, H.; Prommuak, C., 2021. Enhanced energy recovery from food waste by co-production of bioethanol and biomethane process. Fermentation, v. 7, (4), 265. https://doi.org/10.3390/fermentation7040265
Jørgensen, H.; Kristensen, J.B.; Felby, C., 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining, v. 1, (2), 119-134. https://doi.org/10.1002/bbb.4
Karmee, S.K., 2016. Liquid biofuels from food waste: Current trends, prospect and limitation. Renewable and Sustainable Energy Reviews, v. 53, 945-953. https://doi.org/10.1016/j.rser.2015.09.041
Karthikeyan, O.P.; Trably, E.; Mehariya, S.; Bernet, N.; Wong, J.W.; Carrere, H., 2018. Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresource Technology, v. 249, 1025-1039. https://doi.org/10.1016/j.biortech.2017.09.105
Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y., 2014. Enzyme production from food wastes using a biorefinery concept. Waste and Biomass Valorization, v. 5, (6), 903-917. https://doi.org/10.1007/s12649-014-9311-x
Kordala, N.; Walter, M.; Brzozowski, B.; Lewandowska, M., 2024. 2G-biofuel ethanol: an overview of crucial operations, advances and limitations. Biomass Conversion and Biorefinery, v. 14, (3), 2983-3006. https://doi.org/10.1007/s13399-022-02861-y
Lahiri, A.; Daniel, S.; Kanthapazham, R.; Vanaraj, R.; Thambidurai, A.; Peter, L.S., 2023. A critical review on food waste management for the production of materials and biofuel. Journal of Hazardous Materials Advances, v. 10, 100266. https://doi.org/10.1016/j.hazadv.2023.100266
López-Abelairas, M.; Pallín, M.A.; Salvachúa, D.; Lú-Chau, T.; Martínez, M.J.; Lema, J.M., 2013. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess and Biosystems Engineering, v. 36, (9), 1251-1260. https://doi.org/10.1007/s00449-012-0869-z
Lubis, N.E.R.W.M.; Parashakti, R.D., 2019. Social entrepreneur in environmentally friendly unutilized land: a sustainable effort to develop village economy. Journal of Economics and Sustainable Development, v. 10, (8), 130-136. https://doi.org/10.7176/JESD/10-8-17
Lv, Y.; Zhang, Y.; Xu, Y., 2024. Understanding and technological approach of acid hydrolysis processing for lignocellulose biorefinery: Panorama and perspectives. Biomass and Bioenergy, v. 183, 107133. https://doi.org/10.1016/j.biombioe.2024.107133
Matsakas, L.; Kekos, D.; Loizidou, M.; Christakopoulos, P., 2014. Utilization of household food waste for the production of ethanol at high dry material content. Biotechnology for Biofuels, v. 7, (1), 4. https://doi.org/10.1186/1754-6834-7-4
Mezule, L.; Civzele, A., 2020. Bioprospecting white-rot basidiomycete Irpex lacteus for improved extraction of lignocellulose-degrading enzymes and their further application. Journal of Fungi, v. 6, (4), 256. https://doi.org/10.3390/jof6040256
Mussatto, S.I.; Dragone, G. Guimarães, P.M.; Silva, J.P.A.; Carneiro, L.M.; Roberto, I.C.; Teixeira, J.A., 2010. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, v. 28, (6), 817-830. https://doi.org/10.1016/j.biotechadv.2010.07.001
Ntaikou, I.; Antonopoulou, G.; Lyberatos, G., 2020. Sustainable second-generation bioethanol production from enzymatically hydrolyzed domestic food waste using Pichia anomala as biocatalyst. Sustainability, v. 13, (1), 259. https://doi.org/10.3390/su13010259
Ntaikou, I.; Siankevich, S.; Lyberatos, G. 2021. Effect of thermo-chemical pretreatment on the saccharification and enzymatic digestibility of olive mill stones and their bioconversion towards alcohols. Environmental Science and Pollution Research, v. 28, 24570-24579. https://doi.org/10.1007/s11356-020-09625-z
Öner, M.; Nazan, M., 2018. Comparison of Acid and Alkaline Pretreatment Methods for the Bioethanol Production from Kitchen Waste. In: Nižetić, S., Papadopoulos, A. (Eds), The Role of Exergy in Energy and the Environment. Green Energy and Technology. Springer, Cham, pp. 363-372. https://doi.org/10.1007/978-3-319-89845-2_26
O’Driscoll, R.; Stettler, M.E.; Molden, N.; Oxley, T.; Apsimon, H.M., 2018. Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars. Science of The Total Environment, v. 621, 282-290. https://doi.org/10.1016/j.scitotenv.2017.11.271
Ogeda, T.L, Petri, D.F.S., 2010. Biomass enzymatic hydrolysis. Química Nova, v. 33, (7), 1549-1558. https://doi.org/10.1590/S0100-40422010000700023
Osman, A.I.; Qasim, U.; Jamil, F.; Ala'a H. Al-Muhtaseb; Abu Jrai, A.; Al-Riyami, M.; Al-Maawali, S.; Al-Haj, L.; Al-Hinai, A.; Al-Abri, M.; Inayat, A.; Waris, A.; Farrell, C.; Maksoud, M.I.A.A.; Rooney, D.W., 2021. Bioethanol and biodiesel: Bibliometric mapping, policies and future needs. Renewable and Sustainable Energy Reviews, v. 152, 111677. https://doi.org/10.1016/j.rser.2021.111677
Padhan, B.; Ray, M.; Patel, M.; Patel, R., 2023. Production and bioconversion efficiency of enzyme membrane bioreactors in the synthesis of valuable products. Membranes, v. 13, (7), 673. https://doi.org/10.3390/membranes13070673
Panahi, H.K.S.; Dehhaghi, M.; Guillemin, G.J.; Gupta, V.K.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M., 2022. Bioethanol production from food wastes rich in carbohydrates. Current Opinion in Food Science, v. 43, 71-81. https://doi.org/10.1016/j.cofs.2021.11.001
Patria, R.D.; Rehman, S.; Vuppaladadiyam, A.K.; Wang, H.; Lin, C.S.K.; Antunes, E.; Leu, S.Y., 2022. Bioconversion of food and lignocellulosic wastes employing sugar platform: A review of enzymatic hydrolysis and kinetics. Bioresource Technology, v. 352, 127083. https://doi.org/10.1016/j.biortech.2022.127083
Pesce, G.R.; Fernandes, M.C.; Mauromicale, G., 2020. Globe artichoke crop residues and their potential for bioethanol production by dilute acid hydrolysis. Biomass and Bioenergy, v. 134, 105471. https://doi.org/10.1016/j.biombioe.2020.105471
Potumarthi, R.; Baadhe, R.R.; Nayak, P.; Jetty, A., 2013. Simultaneous pretreatment and saccharification of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresource Technology, v. 128, 113-117. https://doi.org/10.1016/j.biortech.2012.10.030
Prasoulas, G.; Gentikis, A.; Konti, A.; Kalantzi, S.; Kekos, D.; Mamma, D., 2020. Bioethanol production from food waste applying the multienzyme system produced on-site by Fusarium oxysporum F3 and mixed microbial cultures. Fermentation, v. 6, (2), 39. https://doi.org/10.3390/fermentation6020039
Qaseem, M. F.; Shaheen, H.; Wu, A.M., 2021. Cell wall hemicellulose for sustainable industrial utilization. Renewable and Sustainable Energy Reviews, v. 144, 110996. https://doi.org/10.1016/j.rser.2021.110996
Rehman, S.; Yang, Y.S.; Patria, R.D.; Zulfiqar, T.; Khanzada, N.K.; Khan, R.J.; Lin, C.S.K., Lee, D.J.; Leu, S.Y., 2023. Substrate-related factors and kinetic studies of Carbohydrate-Rich food wastes on enzymatic saccharification. Bioresource Technology, v. 390, 129858. https://doi.org/10.1016/j.biortech.2023.129858
Rezania, S.; Din, M.F.M.; Taib, S.M.; Mohamad, S.E.; Dahalan, F.A. Kamyab, H.; Darajeh, N.; Ebrahimi, S.S., 2018. Ethanol production from water hyacinth (Eichhornia crassipes) using various types of enhancers based on the consumable sugars. Waste and Biomass Valorization, v. 9, 939-946. https://doi.org/10.1007/s12649-017-9883-3
Robak, K.; Balcerek, M., 2018. Review of second-generation bioethanol production from residual biomass. Food Technology and Biotechnology, v. 56, (2), 174. https://doi.org/10.17113/ftb.56.02.18.5428
Sadh, P.K.; Duhan, S.; Duhan, J.S., 2018. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, v. 5, (1), 1-15. https://doi.org/10.1186/s40643-017-0187-z
Said, Z.; Sharma, P.; Nhuong, Q.T.B.; Bora, B.J.; Lichtfouse, E.; Khalid, H.M.; Luque, R.; Nguyen, X.P.; Hoang, A.T., 2023. Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology, v. 377, 128952. https://doi.org/10.1016/j.biortech.2023.128952
Sagar, N.A.; Pathak, M.; Sati, H.; Agarwal, S.; Pareek, S., 2024. Advances in pretreatment methods for the upcycling of food waste: A sustainable approach. Trends in Food Science & Technology, 104413. https://doi.org/10.1016/j.tifs.2024.104413
Saha, B.C.; Qureshi, N.; Kennedy, G.J.; Cotta, M.A., 2016. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration & Biodegradation, v. 109, 29-35. https://doi.org/10.1016/j.ibiod.2015.12.020
Salimi, E.; Saragas, K.; Taheri, M.E.; Novakovic, J.; Barampouti, E.M.; Mai, S.; Moustakas, K.; Malamis, D.; Loizidou ,M., 2019. The role of enzyme loading on starch and cellulose hydrolysis of food waste. Waste and Biomass Valorization, v. 10, (12), 3753-3762. https://doi.org/10.1007/s12649-019-00826-3
Salvachúa, D.; Prieto, A.; López-Abelairas, M.; Lu-Chau, T.; Martínez, Á.T.; Martínez, M.J., 2011. Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technology, v. 102, (16), 7500-7506. https://doi.org/10.1016/j.biortech.2011.05.027
Sarkar, N.; Gosh, S.K.; Banerjee, S.; Aikat, K., 2012. Bioethanol production from agricultural wastes: an overview. Renewable Energy, v. 37, (1), 19-27. https://doi.org/10.1016/j.renene.2011.06.045
Savatović, S.M.; Tepić, A.N.; Šumić, Z.M.; Nikolić, M.S., 2009. Antioxidant activity of polyphenol-enriched apple juice. Acta Periodica Technologica, v. 40, 95-102. https://doi.org/10.2298/APT0940095S
Sharma, K.; Karki, S.; Thakur, N.; Attri, S., 2012. Chemical composition, functional properties and processing of carrot- A review. Journal Food Science Technology, v. 49, 22-32. https://doi.org/10.1007/s13197-011-0310-7
Shukla, A.; Kumar, D.; Girdhar, M.; Kumar, A.; Goyal, A.; Malik, T.; Mohan, A., 2023. Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. Biotechnology for Biofuels and Bioproducts, v. 16, (1), 44. https://doi.org/10.1186/s13068-023-02295-2
Sondhi, S.; Kaur, P.S., 2020. Techno-economic analysis of bioethanol production from microwave pretreated kitchen waste. SN Applied Sciences, v. 2, (9), 1-13. https://doi.org/10.1007/s42452-020-03362-1
Sun, Y., 2024. Technology research and development prospects of biofuels. Journal of Education and Educational Research, v. 7, (1), 11-15. https://doi.org/10.54097/ks2m1h72
Sun, C.; Meng, X.; Sun, F.; Zhang, J.; Tu, M.; Chang, J.S.; Reungsang, A.; Xia, A.; Ragauskas, A.J., 2023. Advances and perspectives on mass transfer and enzymatic hydrolysis in the enzyme-mediated lignocellulosic biorefinery: a review. Biotechnology Advances, v. 62, 108059. https://doi.org/10.1016/j.biotechadv.2022.108059
Tabatabaei, M.; Aghbashlo M.; Valijanian, E.; Kazemi, H.; Panahi, S.; Nazimi, A.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K., 2020 A comprehensive review on recent biological innovations to improve biogas production, part 2: mainstream and downstream strategies. Renewable Energy, v. 146, 1392-1407. https://doi.org/10.1016/j.renene.2019.07.047
Taheri, M.E.; Salimi, E.; Saragas, K.; Novakovic, J.; Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M., 2021. Effect of pretreatment techniques on enzymatic hydrolysis of food waste. Biomass Conversion and Biorefinery, v. 11, (2), 219-226. https://doi.org/10.1007/s13399-020-00729-7
Torres-León, C.; Chávez-González, M.L.; Hernández-Almanza, A.; Martínez-Medina, G.A.; Ramírez-Guzmán, N.; Londoño-Hernández, L.; Aguilar, C.N., 2021. Recent advances on the microbiological and enzymatic processing for conversion of food wastes to valuable bioproducts. Current Opinion in Food Science, v. 38, 40-45. https://doi.org/10.1016/j.cofs.2020.11.002
Ulbrich, M.; Bai, Y.; Flöter, E., 2020. The supporting effect of ultrasound on the acid hydrolysis of granular potato starch. Carbohydrate Polymers, v. 230, 115633. https://doi.org/10.1016/j.carbpol.2019.115633
Uncu, O.N.; Cekmecelioglu, D., 2011. Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Management, v. 31, (4), 636-643. https://doi.org/10.1016/j.wasman.2010.12.007
United States Department of Agriculture (USDA), 2022. National Nutrition Database – HERBAZEST (Accessed in October 04, 2022) at: https://www.herbazest.com/herbs/lettuce
Xin, D.; Yang, M.; Chen, X.; Zhang, Y.; Wang, R.; Wen, P.; Zhang, J., 2020. Improving cellulase recycling efficiency by decreasing the inhibitory effect of unhydrolyzed solid on recycled corn stover saccharification. Renewable energy, v. 145, 215-221. https://doi.org/10.1016/j.renene.2019.06.029
Xue, S.; Zhao, N.; Song, J.; Wang, X., 2019. Interactive effects of chemical composition of food waste during anaerobic co-digestion under thermophilic temperature. Sustainability, v. 11, (10), 2933. https://doi.org/10.3390/su11102933
Yan, X.; Bergstrom, D.J.; Chen, X.B., 2012. Modeling of cell cultures in perfusion bioreactors. IEEE transactions on biomedical engineering, v. 59, (9), 2568-2575. https://doi.org/10.1109/TBME.2012.2206077
Yang, X.; Chen, Y.; Yao, S.; Qian, J.; Guo, H.; Cai, X., 2019. Preparation of immobilized lipase on magnetic nanoparticles dialdehyde starch. Carbohydrate Polymers, v. 218, 324-332. https://doi.org/10.1016/j.carbpol.2019.05.012
Yin, Y.; Liu, Y.; Meng, S.; Kiran, E.U.; Liu, Y., 2016. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Applied Energy, v. 179, 1131-1137. https://doi.org/10.1016/j.apenergy.2016.07.083
Yu, Z.; Jameel, H.; Chang, H. M.; Philips, R.; Park, S., 2013. Quantification of bound and free enzymes during enzymatic hydrolysis and their reactivities on cellulose and lignocellulose. Bioresource Technology, v. 147, 369-377. https://doi.org/10.1016/j.biortech.2013.08.010
Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Awad, F.N.; Qi, X.; Sahu, J.N., 2019. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable and Sustainable Energy Reviews, v. 105, 105-128. https://doi.org/10.1016/j.rser.2019.01.048
Zhang, B.; Biswal, B.K.; Zhang, J.; Balasubramanian, R., 2023. Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: progress and perspectives. Chemical Reviews, v. 123, (11), 7193-7294. https://doi.org/10.1021/acs.chemrev.2c00673
Zhang, C.; Kang, X.; Wang, F.; Tian, Y.; Liu, T.; Su, Y.; Quian, T.; Zhang, Y., 2020. Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform. Energy, v. 208, 118379. https://doi.org/10.1016/j.energy.2020.118379
Zhang, H.; Han, L.; Dong, H., 2021. An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: experimental and modelling studies. Renewable and Sustainable Energy Reviews, v. 140, 110758. https://doi.org/10.1016/j.rser.2021.110758
Zhang, Z.; Liu, B.; Zhao, Z. K., 2012. Efficient acid-catalyzed hydrolysis of cellulose in organic electrolyte solutions. Polymer Degradation and Stability, v. 97, (4), 573-577. https://doi.org/10.1016/j.polymdegradstab.2012.01.010
Zhou, H.; Zhao, Q.; Jiang, J.; Wang, Z.; Li, L.; Gao, Q.; Wang, K., 2023. Enhancing of pretreatment on high solids enzymatic hydrolysis of food waste: Sugar yield, trimming of substrate structure. Bioresource Technology, v. 379, 128989. https://doi.org/10.1016/j.biortech.2023.128989
Zou, L.; Wan, Y.; Zhang, S.; Luo, J.; Li, Y.Y.; Liu, J., 2020. Valorization of food waste to multiple bio-energies based on enzymatic pretreatment: A critical review and blueprint for the future. Journal of Cleaner Production, v. 277, 124091. https://doi.org/10.1016/j.jclepro.2020.124091
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais (RBCIAMB)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.