Tertiary treatment of dairy industry wastewater with production of Chlorella vulgaris biomass: evaluation of effluent dilution
DOI:
https://doi.org/10.5327/Z21769478787Keywords:
microalgae, biomass, tertiary wastewater treatment, dairy industry, lipidsAbstract
Secondary wastewaters from the dairy industry may cause eutrophication of water bodies when not properly treated, mainly because they contain nutrients such as phosphorus and nitrogen. Tertiary treatment using microalgae could be an adequate solution for Minas Gerais State, the largest Brazilian milk producer, contributing to the reduction of environmental impacts, as well as providing biomass for oil extraction, and obtaining active compounds and inputs (including proteins) for animal feeding. In this work, dilutions (with distilled water) of the secondary wastewater from the dairy industry were evaluated to cultivate Chlorella vulgaris in a bench-scale tubular photobioreactor. Theresults indicate the feasibility of using wastewater from the dairy industry, after secondary treatment, to cultivate microalgae, showing cell growth like that obtained in control cultures (Bold basal medium). The secondary wastewater without dilution (100% wastewater) provided the best condition for biomass production. The biomass obtained in wastewater showed no differences from the biomass obtained in the Bold basal medium (control) in terms of protein, lipid content, or fatty acid profile.
Downloads
References
American Public Health Association (APHA). 2005. Standard methods for the examination of water and wastewater. 21st. ed. American Public Health Association, Washington, D.C.
Association of Official Analytical Chemists (AOAC). 1984. Official Methods of Analysis of the Association of Official Analytical Chemists. 14th. ed. American Public Health Association, Arlington.
Avila-León, I.A.; Matsudo, M.C.; Ferreira-Camargo, L.S.; Rodrigues-Ract, J.N.; Carvalho, J.C.M., 2020. Evaluation of Neochloris oleoabundans as sustainable source of oil-rich biomass. Brazilian Journal of Chemical Engineering, v. 37, 41-48. https://doi.org/10.1007/s43153-020-00011-3.
Barreto, L.V.; Barros, F.M.; Bonomo, P.; Rocha, F.A.; Amorim, J.S., 2013. Eutrofização em rios brasileiros. Enciclopédia Biosfera, Centro Científico Conhecer, v. 9, (16), 2165-2179.
Becker, W., 2004. Microalgae in human and animal nutrition. In: Richmond, A. (Ed.), Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, London, pp. 312-351.
Bellucci, M.; Marazzi, F.; Naddeo, L.S.; Piergiacomo, F.; Beneduce, L.; Ficara, E.; Mezzanotte, V., 2020. Disinfection and nutrient removal in laboratory-scale photobioreactors for wastewater tertiary treatment. Journal of Chemical Technology and Biotechnology, v. 95, (4), 959-966. https://doi.org/10.1002/jctb.6010.
Borowitzka, M.A., 1999. Commercial production of microalgae: ponds, tanks, and fermenters. Progress in Industrial Microbiology, v. 35, 313-321. https://doi.org/10.1016/S0079-6352(99)80123-4.
Brasil. 2005. Resolução nº 357, de 18 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências (Accessed in September, 2007) at: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459.
Bresaola, M.D.; Morocho-Jácome, A.L.; Matsudo, M.C.; Carvalho, J.C.M., 2019. Semi-continuous process as a promising technique in Ankistrodesmus braunii cultivation in photobioreactor. Journal of Applied Phycology, v. 31, (4), 2197-2205. https://doi.org/10.1007/s10811-019-01774-0.
Carmouze, J.P., 1994. O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. Edgard Blucher, São Paulo.
Carvalho, J.C.M.; Bezerra, R.P.; Matsudo, M.C.; Sato, S., 2013. Cultivation of Arthrospira (Spirulina) platensis by Fed-Batch Process. In: Lee, J. (Ed.), Advanced Biofuels and Bioproducts. Springer New York, 2013. v. 9781461433. pp. 781-805. https://doi.org/10.1007/978-1-4614-3348-4_33.
Carvalho, J.C.M.; Matsudo, M.C.; Bezerra, R.P.; Ferreira-Camargo, L.S.; Sato, S., 2014. Microalgae bioreactors. In: Bajpai, R.; Prokop, A.; Zappi, M. (Eds.), Algal Biorefineries: Volume 1: Cultivation of Cells and Products. Springer, Dordrecht, pp. 83-126. https://doi.org/10.1007/978-94-007-7494-0_4.
Chinnasamy, S.; Bhatnagar, A.; Hunt, R.W.; Das, K.C., 2010. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, v. 101, (9), 3097-3105. https://doi.org/10.1016/j.biortech.2009.12.026.
Choi, Y.K.; Jang, H.M.; Kan, E., 2018. Microalgal Biomass and Lipid Production on Dairy Effluent Using a Novel Microalga, Chlorella sp. Isolated from Dairy Wastewater. Biotechnology and Bioprocess Engineering, v. 23, (3), 333-340. https://doi.org/10.1007/s12257-018-0094-y.
Companhia Nacional de Abastecimento (CONAB). 2018. Leite e derivados (Accessed in March, 2020) at: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado.
Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.; Borghi, M., 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, v. 48, (6), 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006.
Derner, R.B.; Ohse, S.; Villela, M.; Carvalho, S.M.; Fett, R., 2006. Microalgae, products and applications. Ciência Rural, v. 36, (6), 1959-1967. https://doi.org/10.1590/S0103-84782006000600050.
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). 2018. Leite oportunidades. Texto Comunicação Corporativa, São Paulo (Accessed in March, 2020) at: www.embrapa.br/gado-de-leite.
Ferreira, L.S.; Rodrigues, M.S.; Converti, A.; Sato, S.; Carvalho, J.C.M., 2012. Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: Use of no-cost CO2from ethanol fermentation. Applied Energy, v. 92, 379-385. http://dx.doi.org/10.1016/j.apenergy.2011.11.019.
Gupta, P.L.; Lee, S.M.; Choi, H.J., 2016. Integration of microalgal cultivation system for wastewater remediation and sustainable biomass production. World Journal of Microbiology and Biotechnology, v. 32, 139. https://doi.org/10.1007/s11274-016-2090-8.
Hartman, L.; Lago, R.C., 1973. Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practice, v. 22, (6), 475-477.
Khan, S.A.; Rashmi; Hussain, M.Z.; Prasad, S.; Banerjee, U.C., 2009. Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, v. 13, (9), 2361-2372. https://doi.org/10.1016/j.rser.2009.04.005.
Koroleff, F., 1976. Determination of nutrients. In: Grasshoff, K. (Ed.), Methods of seawater analysis. Verlag Chemie, Weinheim, pp. 117-181.
Kothari, R.; Pathak, V.V.; Kumar, V.; Singh, D.P., 2012. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: An integrated approach for treatment and biofuel production. Bioresource Technology, v. 116, 466-470. http://dx.doi.org/10.1016/j.biortech.2012.03.121.
Kothari, R.; Prasad, R.; Kumar, V.; Singh, D.P., 2013. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresource Technology, v. 144, 499-503. http://dx.doi.org/10.1016/j.biortech.2013.06.116.
Lourenço, S.O., 2006. Cultivo de microalgas marinhas: princípios e aplicações. Rima, São Carlos.
Lu, W.; Wang, Z.; Wang, X.; Yuan, Z., 2015. Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, v. 192, 382-388. http://dx.doi.org/10.1016/j.biortech.2015.05.094.
Machado, R.M.G.; Silva, P.C.; Freire, V.H., 2001. Controle ambiental em indústrias de laticínios. Brasil Alimentos, (7), 34-36.
Mackereth, F.J.; Heron, J.; Talling, J.F., 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association, Ambleside.
Maganha, M.F.B. 2006. Guia técnico ambiental da indústria de produtos lácteos. CETESB, São Paulo.
Markou, G.; Vandamme, D.; Muylaert, K, 2014. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, v. 65, 186-202. http://dx.doi.org/10.1016/j.watres.2014.07.025.
Mata, T.M.; Martins, A.A.; Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, v. 14, (1), 217-232. http://dx.doi.org/10.1016/j.rser.2009.07.020.
Matsudo, M.C.; Bezerra, R.P.; Sato, S.; Perego, P.; Converti, A.; Carvalho, J.C.M., 2009. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochemical Engineering Journal, v. 43, (1), 52-57. https://doi.org/10.1016/j.bej.2008.08.009.
Matsudo, M.C.; Sant'Anna, C.L.; Pérez-Mora, L.S.; Silva, R.C.; Carvalho, J.C.M, 2020. Isolation and Evaluation of Microalgae from Mangrove Area in South Coast of Sao Paulo (Brazil) for Lipid Production. International Journal of Current Microbiology and Applied Sciences, v. 9, (6), 1293-1302. https://doi.org/10.20546/ijcmas.2020.906.161.
McGinn, P.J.; Dickinson, K.E.; Bhatti, S.; Frigon, J.C.; Guiot, S.R.; O’Leary, S.J.B., 2011. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: Opportunities and limitations. Photosynthesis Research, v. 109, (1-3), 231-247. https://doi.org/10.1007/s11120-011-9638-0.
Pelizer, L.H.; Sassano, C.E.; Carvalho, J.C.M.; Sato, S.; Gioielli, L.A.; Moraes, I.O., 1999. Padronização do método de secagem da biomassa de Spirulina platensis. Farmácia e Química, v. 32, (1), 37-40.
Peng, Y.Y.; Gao, F.; Hang, W.J.W.; Yang, H.L.; Jin, W.H.; Li, C., 2019. Effects of organic matters in domestic wastewater on lipid/carbohydrate production and nutrient removal of Chlorella vulgaris cultivated under mixotrophic growth conditions. Journal of Chemical Technology and Biotechnology, v. 94, (11), 3578-3584. https://doi.org/10.1002/jctb.6161.
Pérez-Mora, L.S.; Matsudo, M.C.; Cezare-Gomes, E.A.; Carvalho, J.C.M., 2016. An investigation into producing Botryococcus braunii in a tubular photobioreactor. Journal of Chemical Technology and Biotechnology, v. 91, (12), 3053-3060. https://doi.org/10.1002/jctb.4934.
Rodrigues-Sousa, A.E.; Nunes, I.V.O.; Muniz-Junior, A.B.; Carvalho, J.C.M.; Mejia-da-Silva, L.C.; Matsudo, M.C., 2021. Nitrogen supplementation for the production of Chlorella vulgaris biomass in secondary effluent from dairy industry. Biochemical Engineering Journal, v. 165, 107818. https://doi.org/10.1016/j.bej.2020.107818.
Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Vaca-Garcia, C., 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, v. 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007.
Sarkar, B.; Chakrabarti, P.P.; Vijaykumar, A.; Kale, V., 2006. Wastewater treatment in dairy industries - possibility of reuse. Desalination, v. 195, (1-3), 141-152. https://doi.org/10.1016/j.desal.2005.11.015.
Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B., 2008. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Research, v. 1, (1), 20-43. https://doi.org/10.1007/s12155-008-9008-8.
Shen, Y.; Yuan, W.; Pei, Z.; Mao, E., 2008. Culture of Microalga Botryococcus in Livestock Wastewater. Transactions of the ASABE, v. 51, (4), 1395-1400. https://doi.org/10.13031/2013.25223.
Sousa, M.P., 2007. Organismos planctônicos de sistemas de lagoas de tratamento de esgotos sanitários como alimento natural na criação de Tilápia do Nilo. Universidade Federal de Viçosa, Viçosa.
Strickland, J.D.; Parsons, T., 1960. A Manual of Seawater Analysis. Bulletin of the Fisheries Research Board of Canada, v. 125, 1-185.
Takagi, M.; Karseno; Yoshida, T. 2006. Effect of Salt Concentration on Intracellular Accumulation of Lipids and Triacylglyceride in Marine Microalgae Dunaliella Cells. Journal of Bioscience and Bioengineering, v. 101, (3), 223-226. https://doi.org/10.1263/jbb.101.223.
Tallima, H.; El Ridi, R., 2018. Arachidonic acid: Physiological roles and potential health benefits – A review. Journal of Advanced Research, v. 11, 33-41. https://doi.org/10.1016/j.jare.2017.11.004.
Teitelbaum, J.E.; Walker, W.A., 2001. Review: The role of omega 3 fatty acids in intestinal inflammation. Journal of Nutritional Biochemistry, v. 12, (1), 21-32. https://doi.org/10.1016/S0955-2863(00)00141-8.
UTEX. The Culture Collection of Algae at the University of Texas at Austin (Accessed September 3, 2011) at: http://www.sbs.utexas.edu/utex/.
Venkatesan, R.; Vagasam, K.P.K.; Balasubramanian, T., 2006. Culture of marine microalgae in shrimp farm discharge water: a sustainable approach to reduce the cost production and recovery of nutrients. Journal of Fisheries and Aquatic Science, v. 1, (3), 262-269. https://dx.doi.org/10.3923/jfas.2006.262.269
Verlengia, R.; Lima, T.M., 2002. Síntese de Ácidos Graxos. In: Curi, R.; Pompeia, C.; Miyasaka, C.K.; Procópio, J. (Eds.). Entendendo a gordura: os ácidos graxos. Manole, São Paulo, pp. 121-134.
Wang, S.T.; Pan, Y.Y.; Liu, C.C.; Chuang, L.T.; Chen, C.N.N., 2011. Characterization of a green microalga UTEX 2219-4: Effects of photosynthesis and osmotic stress on oil body formation. Botanical Studies, v. 52, (3), 305-312.
Yeh, K.-L.; Chang, J.-S., 2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, v. 105, 120-127. https://doi.org/10.1016/j.biortech.2011.11.103.
Zhao, P.; Yu, X.; Li, J.; Tang, X.; Huang, Z., 2014. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. Journal of Bioscience and Bioengineering, v. 118, (1), 72-77. https://doi.org/10.1016/j.jbiosc.2013.12.014.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.