Arabica coffee and cedar tree: integrating biotic and abiotic drivers
DOI:
https://doi.org/10.5327/Z21769478763Keywords:
Agroforestry system; Coffea Arabica; Toona ciliatta M. Roem; allelopathy; shading.Abstract
Agroforestry systems are important forms of sustainable farming, providing several ecosystem services. However, characterization and management of factors such as thermal and light heterogeneity, as well as interactions between trees and coffee plants, are determinants for achieving the desired sustainability. This study aimed to verify whether different distances between Coffea arabica L. and Australian red cedar can change soil and microclimate characteristics and how they alter morphological and physiological attributes of coffee plants over the rainy season and a prolonged drought period (veranico) in Summer. The trial was carried out in the municipality of Barra do Choça, in an area with Australian red cedar trees (Toona ciliata M. Roem), distributed in two hedges, spaced 19.8 × 3 m apart, in a northeastsouthwest direction, and coffee plants var. Catucaí Vermelho (3.3 × 0.5 m). Treatments were defined by the distance between the coffee plants and the first row of the Australian red cedar hedge (3.3 m, T1; 6.6 m, T2; 9.9 m, T3; 13.2 m, T4; 16.4 m, T5). Morphology and physiology of coffee plants, soil temperature, incident light on coffee plants, and the allelopathic potential of Australian red cedar leaf extracts were assessed in the wet and dry season of the 2016–2017 Summer. Temperatures fluctuated less in experimental units close to the hedge. The reduced growth of coffee plants close to the hedges was related to self-shading associated with light restriction by the trees. The experiment showed the allelopathic potential of Australian red cedar leaves.
Downloads
References
Alves, V.; Goulart, F.F.; Jacobson, T.K.B.; Miranda Filho, R.J.; Ribas, C.E.D.C., 2016. Shade’s benefit: coffee production under shade and full sun. Journal of Agricultural Science, v. 8, (11), 11-19. http://doi.org/10.5539/jas.v8n11p11
Araújo, A.V.; Partelli, F.L.; Oliosi, G.; Pezzopane, J.R.M., 2016. Microclimate, development and productivity of robusta coffee shaded by rubber trees and at full sun. Revista Ciência Agronômica, v. 47, (4), 700-709. https://doi.org/10.5935/1806-6690.20160084.
Bhardwaj, D.R.; Devi, Y.; Pala, N.A.; Sharma, U.; Kaushal, R., 2018. Influence of diameter class and field conditions on nutrient cycling under Toona ciliata M. Roem trees in north-western Himalaya. Environmental Processes, v. 5, (2), 427-440. https://doi.org/10.1007/s40710-018-0290-y.
Bote, A.D.; Ayalew, B.; Ocho, F.L.; Anten, N.P.; Vos, J., 2018. Analysis of coffee (Coffea arabica L.) performance in relation to radiation levels and rates of nitrogen supply I. Vegetative growth, production and distribution of biomass and radiation use efficiency. European Journal of Agronomy, v. 92, 115-122. https://doi.org/10.1016/j.eja.2017.10.007.
Campa, C.; Urban, L.; Mondolot, L.; Fabre, D.; Roques, S.; Lizzi, Y.; Arrrouf, J.; Doulbeau, S.; Breither, J.-C.; Letrez, C.; Toniutti, L.; Bertrand, B.; La Fisca, P.; Bidel, L. P. R.; Etienne, H., 2017. Juvenile coffee leaves acclimated to low light are unable to cope with a moderate light increase. Frontiers in Plant Science, v. 8, article 1126. https://doi.org/10.3389/fpls.2017.01126.
Čatský, J., 1960. Determination of water deficit in disks cut out from leaf blades. Biologia Plantarum, v. 2, (1), 76. https://doi.org/10.1007/BF02920701.
Coltri, P.P.; Pinto, H.S.; Gonçalves, R.R.V.; Zullo Junior, J.; Dubreuil, V., 2019. Low levels of shade and climate change adaptation of Arabica coffee in southeastern Brazil. Heliyon, v. 5, (2), e01263. https://doi.org/10.1016/j.heliyon.2019.e01263.
Da Matta, F.M.; Avila, R.T.; Cardoso, A.A.; Martins, S.C.; Ramalho, J.C., 2018. Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: a review. Journal of Agricultural and Food Chemistry, v. 66, (21), 5264-5274. https://doi.org/10.1021/acs.jafc.7b04537.
Da Silva, M.C.; Araujo, E.C.G.; Silva, T.C.; Araújo, A.B.; Lins, T.R.S.; Leão, S.L.M.; Lima, T.V., 2019. Alelopatic effects of Tectona grandis LF in the germination and initial development of lettuce (Lactuca sativa L.). Journal of Agricultural Science, v. 11, (1), 382-387. https://doi.org/10.5539/jas.v11n1p382.
Da Silva Neto, F.J.; Bonfant, L.; Gazaffi, R; Fontanetti, A., 2019. Effects of shade trees spatial distribution and species on photosynthetic rate of coffee trees. Coffee Science, v. 14, (3), 326-337. https://doi.org/10.25186/cs.v14i3.
De Leo, M.; Milella, L.; Braca, A.; De Tommasi, N., 2018. Cedrela and Toona genera: a rich source of bioactive limonoids and triterpenoids. Phytochemistry Reviews, v. 17, (4), 751-783. https://doi.org/10.1007/s11101-018-9557-1.
Dias, K.G.D.L.; Guimarães, P.T.G.; Furtini Neto, A.E.; Silveira, H.R.O.D.; Lacerda, J.J.J., 2017. Effect of magnesium on gas exchange and photosynthetic efficiency of coffee plants grown under different light levels. Agriculture, v. 7, (10), 85. https://doi.org/10.3390/agriculture7100085.
Divakar, P.R., 2017. Phytopharmacology of Toona ciliata: a review. International Research Journal of Pharmacy, v. 8, (5), 30-35. https://doi.org/10.7897/2230-8407.08568.
Galetti, G.; Silva, J.M.S.; Piña-Rodrigues, F.C.M.; Piotrowiski, I., 2018. Análise multicriterial da estabilidade ecológica em três modelos de restauração florestal. Revista Brasileira de Ciências Ambientais (Online), (48), 142-157. https://doi.org/10.5327/Z2176-947820180301.
Garima; Devi, M., 2017. Allelopathy in agroforestry: A review. Journal of Pharmacognosy and Phytochemistry, v. 6, (3), 686-688.
Lisboa, L.A.M.; Lapaz, A.M.; Spósito, T.H.N.; Viana, R.S.; Figueiredo, P.A.M., 2019. Growth, development and foliar ultrastructural parameters of different eucalyptus genetic materials. Floresta, v. 49, (1), 21-30. https://doi.org/10.5380/rf.v49i1.52527.
Lungu, L.; Popa, C.V.; Morris, J.; Savoiu, M., 2011. Evaluation of phytotoxic activity of Melia azedarach L. extracts on Lactuca sativa L. Romanian Biotechnological Letters, v. 16, (2), 6089-6095.
Mamrutha, H.M.; Sharma, D.; Kumar, K.S.; Venkatesh, K.; Tiwari, V.; Sharma, I., 2017. Influence of diurnal irradiance variation on chlorophyll values in wheat: A comparative study using different chlorophyll meters. National Academy Science Letters, v. 40, (3), 221-224. https://doi.org/10.1007/s40009-017-0544-7.
Meireles, I.E.S.; Matsumoto, S.N.; Reis, C.A.S.; Pereira, L.F.; Oliveira, U.S.; Barreto-Garcia, P.A.B.; Prado, T.R.; Ramos, P.A.S., 2019. Estimativa da biomassa de cafeeiros em sistemas agroflorestais sob manejo orgânico e convencional em diferentes arranjos. Revista Brasileira de Ciências Ambientais (Online), (53), 134-147. https://doi.org/10.5327/Z2176-947820190488.
Miniussi, M.; Terra, L. D.; Savi, T.; Pallavicini, A.; Nardini, A., 2015. Aquaporins in Coffea arabica L.: identification, expression, and impacts on plant water relations and hydraulics. Plant Physiology and Biochemistry, v. 95, 92-102. https://doi.org/10.1016/j.plaphy.2015.07.024.
Moreira, S.L.; Pires, C.V.; Marcatti, G.E.; Santos, R.H.; Imbuzeiro, H.M.; Fernandes, R.B., 2018. Intercropping of coffee with the palm tree, macauba, can mitigate climate change effects. Agricultural and Forest Meteorology, v. 256-257, 379-390. https://doi.org/10.1016/j.agrformet.2018.03.026.
National Supply Company (CONAB). 2016. Follow-up of the Brazilian Crop: coffee. Public survey of coffee crop of 2016. CONAB (Accessed September 20, 2017) at: https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe?start=10.
Nebo, L.; Varela, R.M.; Molinillo, J.M.G.; Severino, V.G.P.; Sarria, A.L.F.; Cazala, C.M.; Fernandes, M.F.G.; Fernandes, J.B.; Macías, F.A., 2015. Phytotoxicity of triterpenes and limonoids from the Rutaceae and Meliaceae. 5α, 6β, 8α, 12α-tetrahydro-28-norisotoonafolin–a potent phytotoxin from Toona ciliata. Natural Product Communications, v. 10, (1), 17-20. https://doi.org/10.1177/1934578X1501000107.
Oliosi, G.; Giles, J.A.D.; Rodrigues, W.P.; Ramalho, J.C.; Partelli, F.L., 2016. Microclimate and development of' Coffea canephora cv. Conilon under different shading levels promoted by Australian cedar ('Toona ciliata' M. Roem. var. Australis). Australian Journal of Crop Science, v. 10, (4), 528-538. https://doi.org/10.21475/ajcs.2016.10.04.p7295x.
Oliveira, L.F.R.; Santos, P.H.R.; Silva, L.G.; Correia, L.P.S.; LAFETÁ, B.O., 2019. Cultivo de meliáceas arbóreas no Brasil. Applied Research & Agrotechnology, v. 12, (2), 139-151. http://doi.org/10.5935/PAeT.V12.N2.14.
Padilla, F.M.; Souza, R.; Peña-Fleitas, M.T.; Grasso, R.; Gallardo, M.; Thompson, R.B., 2019. Influence of time of day on measurement with chlorophyll meters and canopy reflectance sensors of different crop N status. Precision Agriculture, v. 20, 1087-1106. https://doi.org/10.1007/s11119-019-09641-1.
Padovan, M.D.P.; Brook, R.M.; Barrios, M.; Cruz-Castillo, J.B.; Vilchez-Mendoza, S.J.; Costa, A.N.; Rapidel, B., 2018. Waterloss by transpiration and soil evaporation in coffee shaded by Tabebuia rosea Bertol. and Simarouba glauca DC. compared to unshaded coffee in sub-optimal environmental conditions. Agricultural and Forest Meteorology, v. 248, 1-14. https://doi.org/10.1016/j.agrformet.2017.08.036.
Parmar, A.G.; Thakur, N.S.; Gunaga, R.P., 2019. Melia dubia Cav. leaf litter allelochemicals have ephemeral allelopathic proclivity. Agroforestry Systems, v. 93, 1347-1360. https://doi.org/10.1007/s10457-018-0243-5.
Peloso, A.D.F.; Tatagiba, S.D.; Reis, E.F.; Pezzopane, J.E.M.; Amaral, J.F.T., 2017. Photosynthetic limitations in leaves of arabic coffee promoted by the water deficit. Coffee Science, v. 12, (3), 389-399.
Petit-Aldana, J.; Lezama, C.P.; Rahman, M.M.; Arenas, O.R.; Infante-Cruz, A.; Basu, S.K., 2017. Coffee (Coffea arabica L.) agroforestry systems and solar radiation. In: Basu, S.K.; Zandi, P.; Chalaras, S.K. (Eds.), Environment at Crossroads: Challenges, Dynamics and Solutions. Haghshenass, Rasht, RAS, IRI, pp. 236-248.
Rawat, P.; Narkhede, S.S.; Rane, A.D.; Mhaiske, V.M.; Dalvi, V.V., 2017. Allelopathic effect of leaf leachates of solid bamboo Dendrocalamus stocksii (Munro.) on growth and yield of Eleusine coracana L. (Gaertn.). Indian Journal of Agroforestry, v. 19, (2), 79-82.
Ribeiro, A.F.F.; Matsumoto, S.N.; Pereira, L.F.; Oliveira, U.S.; Teixeira, E.C.; Ramos, P.A.S., 2019. Content of photosynthetic pigments and leaf gas exchanges of young coffee plants under light restriction and treated with paclobutrazol. Journal of Experimental Agriculture International, v. 32, (6), 1-13. https://doi.org/10.9734/jeai/2019/v32i630128.
Rodrigues, L.D.A.; Castro, E.M.; Pereira, F.J.; Maluleque, I.F.; Barbosa, J.P.R.A.D.; Rosado, S.D.S., 2016. Effects of paclobutrazol on leaf anatomy and gas exchange of Toona ciliata clones. Australian Forestry, v. 79, (4), 241-247. https://doi.org/10.1080/00049158.2016.1235476.
Rodrigues, W.P.; Martins, M.Q.; Fortunato, A.S.; Rodrigues, A.P.; Semedo, J.N.; Simões-Costa, M.C.; Pais, I.P.; Leitão, A.E.; Colwell, F.; Goulao, L.; Máguas, C.; Maia, R.; Partelli, F.L.; Campostrini, E.; Scotti-Campos, P.; Ribeiro-Barros, A.I.; Lidon, F.C.; Matta, F.M.; Ramalho, J.C., 2016. Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biology, v. 22, (1), 415-431. https://doi.org/10.1111/gcb.13088.
Samaradivakara, S.P.; Samarasekera, R.; Handunnetti, S.M.; Weerasena, O.J., 2016. Cholinesterase, protease inhibitory and antioxidant capacities of Sri Lankan medicinal plants. Industrial Crops and Products, v. 83, 27-234. https://doi.org/10.1016/j.indcrop.2015.12.047.
Scholander, P.F.; Hammel, H.T.; Hemmingsen, E.A.; Bradstreet, E.D., 1964. Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences, v. 52, (1), 119-125. https://doi.org/10.1073/pnas.52.1.119.
Schwerz, F.; Caron, B.O.; Nardino, M.; Elli, E.F.; Stolzle, J.R.; Carvalho, L.G.; Neto, D.D., 2020. Assessing yield, growth and climate traits in agroforestry systems in southern Brazil. Journal of Sustainable Forestry, 1746913. https:///doi.org/10.1080/10549811.2020.1746913.
Tandon, S.; Sand, N.K., 2016. Qualitative analysis of phenolic constituents from leaves of some plants of family Meliaceae. International Journal of Medicinal Plants and Natural Products, v. 2, (1), 27-30. http://doi.org/10.20431/2454-7999.0201005.
Thioune, E.H.; McCarthy, J.; Gallagher, T.; Osborne, B., 2017. A humidity shock leads to rapid, temperature dependent changes in coffee leaf physiology and gene expression. Tree Physiology, v. 37, (3), 367-379. https://doi.org/10.1093/treephys/tpw129.
Xiong, D.; Chen, J.; Yu, T.; Gao, W.; Ling, X.; Li, Y.; Peng, S.; Huang, J., 2015. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Scientific Reports, v. 5, 13389. https://doi.org/10.1038/srep13389.
Zhang, L.; Xia, J.; Yang, J.; Zhu, L.; Tanga, D.; Ma, J.; Zhao, Y.; Zenga, X.; Qiu, M., 2019. Toona micronoids A–D, four new B-seco-limonoids from Toona microcarpa. Phytochemistry Letters, v. 31, 225-22819.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.