Comparative evaluation of performance and usability of small-scale household composting with different geometric models
DOI:
https://doi.org/10.5327/z2176-947820200757Keywords:
organic solid waste; valorization of solid waste; small-scale composting; composting bins; design.Abstract
The evaluation of layout influence on the operational performance and usability of small-scale composters contributes to produce compact solutions with simplified operation and sanitary safety, suitable for reduced spaces and continued use. This study aims to report the influence of different designs on the composting process and the usability of compost bins. Five composters of similar scale (3 liters) and different geometric shapes were designed, manufactured, and tested. Bench tests were carried out for 60 days, and physical, chemical, and sanitary parameters were monitored, as well as the quality of the compost, according to agronomic parameters. The composters were filled with the same proportions of organic residues (food residues, dry leaves, and lawn trimming) to obtain the ideal C:N ratio. Three geometrical layouts were tested concerning usability (hexagonal prism, cube, and parallelepiped) by volunteers for 50 days. The performed tests associated with the statistical treatment of results showed that the geometry of the prototypes interfered with the quality of the final compost and the composter operation. The hexagonal prism and the cube showed greater usability. The results represent a significant contribution to the advancement of solutions in decentralized composting.
Downloads
References
AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the exam-ination of water and wastewater. 20. ed. Washington, D.C.: American Public Health Associa-tion, American Water Works Association, Water Environmental Federation, 1998.
ARRIGONI, J. P.; PALADINO, G.; GARIBALDI, L. A.; LAOS, F. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in verti-cal compost bins. Waste Management, v. 76, p. 284-293, 2018. https://doi.org/10.1016/j.wasman.2018.03.010
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 10664: águas - determinação de resíduos sólidos pelo método gravimétrico. Rio de Janeiro: ABNT, 1989.
BENCH, M. L.; WOODARD, R.; HARDER, M. K.; STANTZOS, N. Waste minimization: home digestion of biodegradable waste. Resources, Conservation and Recycling, v. 45, n. 1, p. 84-94, 2005. https://doi.org/10.1016/j.resconrec.2005.02.003
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa SDA/MAPA 25/2009. Diário Oficial da União, Brasília, 2009.
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Manual de métodos analíticos oficiais para fertilizantes e corretivos. Brasília: Ministério da Agricultura, Pecuária e Abasteci-mento, 2017. Available at: <https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/manual-de-metodos_2017_isbn-978-85-7991-109-5.pdf>. Accessed on: Aug 26, 2020.
BRASIL. Ministério do Meio Ambiente. Lei nº 12.305 de 2 de agosto de 2010. Institui a Políti-ca Nacional de Resíduos Sólidos. Diário Oficial da União, Brasília, 2010.
BRINGHENTI, J. R.; CAMPOS, J. S.; TONINI, E. V.; KORRES, A. M. N. A compostagem em pequena escala como alternativa de minimização de resíduos sólidos em domicílios. In: Con-gresso Brasileiro de Engenharia Sanitária e Ambiental, 28., 2015, Rio de Janeiro. Annals [...]. 2015.
CARRY ON COMPOSTING. Home and community composting. Carry on Composting, 2019. Available at: <http://www.carryoncomposting.com/416920203>. Accessed on: Mar 3, 2020.
CATECATI, T.; FAUST, F. G.; ROEPKE, G. A. L.; ARAUJO, F. S.; ALBERTAZZI, D.; RAMIREZ, A. R. G.; FERREIRA, M. G. G. Métodos para avaliação da usabilidade no design de produtos. DAPesquisa, v. 6, n. 8, p. 564-581, 2018. https://doi.org/10.5965/1808312906082011564
DUTRA, A. C.; MEDEIROS, G. A.; GIANELLI, B. F. Avaliação do ciclo de vida como uma ferramenta de análise de impactos ambientais e conceito aplicados em programas educativos. Revista Brasileira de Ciências Ambientais, n. 51, p. 15-27, 2019. https://doi.org/10.5327/Z2176-947820190399
EUROPEAN COMMISSION. Waste prevention. European Commission, 2016. Available at: <http://ec.europa.eu/environment/waste/prevention/index.htm>. Accessed on: Jul 9, 2018.
FAVERIAL, J.; SIERRA, J. Home composting of household biodegradable wastes under the tropical conditions of Guadeloupe (French Antilles). Journal of Cleaner Production, n. 83, p. 238-244, 2014. https://doi.org/10.1016/j.jclepro.2014.07.068
FEIL, A.; SPILKI, F.; SCHREIBER, D. Global analysis of the characteristics of urban residen-tial waste fractions. Revista Brasileira de Ciências Ambientais, n. 38, p. 63-77, 2015. https://doi.org/10.5327/Z2176-9478201510914
GUIDONI, L. L. C.; MARQUES, R. V.; MONCKS, R. B.; BOTELHO, F. T.; PAZ, M. F.; CORRÊA, L. B.; CORRÊA, E. K. Home composting using different ratios of bulking agent to food waste. Journal of Environmental Management, v. 207, p. 141-150, 2018. https://doi.org/10.1016/j.jenvman.2017.11.031
GÜNTHER, W. M. R. Poluição do solo. In: PHILIPPI JR., A.; PELICIONI, M. C. F. (org.). Educação ambiental e sustentabilidade. Barueri: Manole, 2005. p. 195-215.
IBM. SPSS Statistics 20. Statistics software. 20 version. Dassault Systemes. IBM, 2016.
INSTITUTO DE PESQUISA ECONÔMICA APLICADA (IPEA). Caderno de Diagnóstico: Resíduos Sólidos Urbanos. Brasília: IPEA, 2018. Available at: <http://www.snis.gov.br/downloads/diagnosticos/rs/2018/Diagnostico_RS2018.pdf>. Ac-cessed on: Mar 2020.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO). Ergonomics of human-system interaction — Part 11: Usability: Definitions and concepts. ISO, 1998. Availa-ble at: <https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en>. Accessed on: Jun. 10, 2018.
JAYAPRAKASH, S.; LOHIT, H.S.; ABHILASH, B.S. Design and development of compost bin for Indian kitchen. International Journal of Waste Resources, v. 8, n. 1, 2018. https://doi.org/10.4172/2252-5211.1000323
KIEHL, E. J. Manual de Compostagem: maturação e qualidade do composto. 4. ed. Piracicaba: E. J. Kiehl, 2004.
KUMAR, S.; KUMAR, M.; THUROW, K.; STOLL, R.; KRAGL, U. Fuzzy filtering for ro-bust bio concentration factor modeling. Environmental Modelling & Software, v. 24, n. 1, p. 44-53, 2009. https://doi.org/10.1016/j.envsoft.2008.05.002
LLÉO, T.; ALBACETE, E.; BARRENA, R.; FONT, X.; ARTOLA, A.; SÁNCHEZ, A. Home and vermicomposting as sustainable options for bio waste management. Journal of Cleaner Production, v. 47, p. 70-76, 2013. https://doi.org/10.1016/j.jclepro.2012.08.011
MARGARITIS, M.; PSARRAS, K.; PANARETOU, V.; THANOS, A.G.; MALAMIS, D.; SOTIROPOULOS, A. Improvement of home composting process of food waste using differ-ent minerals. Waste Management, v. 73, p. 87-100, 2018. https://doi.org/10.1016/j.wasman.2017.12.009
MASSUKADO, L. M. Compostagem: nada se cria, nada se perde, tudo se transforma. Brasília: Instituto Federal de Brasília, 2016.
METCALFE, A.; RILEY, M.; BARR, S.; TUDOR, T.; ROBINSON, G.; GUILBERT, S. Fo-od waste bins: bridging infrastructures and practices. The Sociological Review, v. 60, n. S2, p. 135-155, 2012. https://doi.org/10.1111/1467-954X.12042
MICROTACK. Carbon/nitrogen ratio for various compostable materials. Microtack, 2019. Available at: <https://www.microtack.com/html/compost_carbon.html>. Accessed on: Mar 3, 2020.
ONWOSI, C. O.; IGBOKWE, V. C.; ODIMBA, J. N.; EKE, I. E.; NWANKWOALA, M. O.; IROH, I. N.; EZEOGU, L. I. Composting technology in waste stabilization: On the methods challenges and future prospects. Journal of Environmental Management, v. 190, p. 140-157, 2017.
ORGANIZAÇÃO DAS NAÇÕES UNIDAS (ONU). Transformando o nosso mundo: a agenda 2030 para o desenvolvimento sustentável. ONU, 2015. Available at: <https://nacoesunidas.org/pos2015/agenda2030/>. Accessed on: Jan 2, 2020.
PLANET NATURAL. Planet Natural Research Center. Carbon-to-Nitrogen Ratios. Planet Natural, 2018. Available at: <https://www.planetnatural.com/composting-101/making/c-n-ratio/>. Accessed on: Mar 3, 2020.
SIQUEIRA, T. M. O.; ASSAD, M. L. R. C. L. Compostagem de resíduos sólidos urbanos no estado de São Paulo (Brasil). Ambiente & Sociedade, v. 18, n. 4, p. 243-264, 2015. https://doi.org/10.1590/1809-4422ASOC1243V1842015
SISTEMA NACIONAL DE INFORMAÇÕES SOBRE SANEAMENTO (SNIS). Diagnósti-co do manejo de resíduos sólidos urbanos. Brasília: Ministério das Cidades, Secretaria Nacio-nal de Saneamento Ambiental, 2017. Available at: <http://www.snis.gov.br/diagnostico-residuos-solidos/diagnostico-rs-2017>. Accessed on: Mar 3, 2020.
SMITH, S. R.; JASIM, S. Small-scale home composting of biodegradable household waste: overview of key results from a 3-year research program in West London. Waste Management and Research, v. 27, n. 10, p. 941-950, 2009. https://doi.org/10.1177%2F0734242X09103828
SOLID WORKS. Design Software. 2016. 9000 version. Dassault Systems. 2016.
TATÀNO, F.; PAGLIARO, G.; DI GIOVANNI, P.; FLORIANI, E.; MANGANI, F. Bio-waste home composting: Experimental process monitoring and quality control. Waste Manage-ment, n. 38, p. 72-85, 2015. https://doi.org/10.1016/j.wasman.2014.12.011
UNIVERSITY OF MISSOURI. Making and Using Compost. Columbia: University of Mis-souri, 2010. Available at: <https://extension.missouri.edu/publications/g6956>. Accessed on: Mar 3, 2020.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.