The dynamics of knowledge about stemflow: a systematic review

Authors

DOI:

https://doi.org/10.5327/Z2176-947820200675

Keywords:

forest hydrology; forest restoration; rainfall repartitioning; throughfall; biogeochemical cycle.

Abstract

The importance of stemflow to hydrology and biogeochemistry in forest ecosystems is highlighted by the growing interest of the scientific community since the 1970s. This paper summarizes the main contributions of stemflow (SF) studies from recent years through a systematic review of the literature, including 375 scientific articles published between 2006 and 2019. Shrub SF has shown superior efficiency (11.1%) compared to tree species (3.6%). Branches, bark texture and composition, branch and leaf saturation capacity, and wind intensity were identified as factors that significantly influence SF. However, despite the increasing number of publications on the subject, most of them focus on semi-arid regions of Asia, particularly of China, and temperate regions. Thus, there is still a lack of knowledge about the role of the different species in the biogeochemical cycle concerning the SF in tropical and semi-equatorial regions.

Downloads

Download data is not yet available.

References

ABREU, M.C.; TONELLO, K.C. Avaliação dos Parâmetros Hidrometeorológicos na Bacia do Rio Sorocaba/SP. Revista Brasileira de Meteorologia, v. 32, n. 1, p. 99-109, 2017. https://doi.org/10.1590/0102-778632120150164

ABREU, M.C.; TONELLO, K.C. Estimativa do balanço hídrico climatológico da bacia hidrográfica do rio Sorocaba – São Paulo. Ambiência, Guarapuava, v. 11, n. 3, p. 513-527, 2015. http://doi.org/10.5935/ambiencia.2015.03.01

AHMED, A.; TOMAR, J.M.S.; MEHTA, H.; KAUSHAL, R.; DEB, D.; CHATURVEDI, O.P.; MISHRA, P.K. Throughfall, stemflow and interception loss in grewia optiva and morus alba in North West Himalayas. Tropical Ecology, v. 58, n. 3, p. 507-514, 2017.

ANDRÉ, F.; JONARD, M.; PONETTE, Q. Spatial and temporal patterns of throughfall chemistry within a temperate mixed oak-beech stand. Science of the Total Environment, v. 397, n. 1-3, p. 215-228, 2008. https://doi.org/10.1016/j.scitotenv.2008.02.043

ASSIS, J.; SOUZA, W.; SOBRAL, M. do C. Análise climática da precipitação no submédio da bacia do rio São Francisco com base no índice de anomalia de chuva. Revista Brasileira de Ciências Ambientais (Online), n. 36, p. 115-127, 2015. https://doi.org/10.5327/Z2176-947820151012

BALIEIRO, F.D.C.; FRANCO, A.A.; FONTES, R.L.F.; DIAS, L.E.; CAMPELLO, E.F.C.; FARIA, S.M. Evaluation of the throughfall and stemflow nutrient contents in mixed and pure plantations of Acacia mangium, Pseudosamenea guachapele and Eucalyptus grandis. Revista Árvore, v. 31, n. 2, p. 339-346, 2007. https://doi.org/10.1590/S0100-67622007000200017

BARBIER, S.; BALANDIER, P.; GOSSELIN, F. Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review. Annals of Forest Science, v. 66, p. 602, 2009. https://doi.org/10.1051/forest/2009041

BESSI, D.; DIAS, H.C.T.; TONELLO, K.C. Rainfall Partitioning in fragments of Cerrado vegetation at different stages of conduction of natural regeneration. Revista Árvore, Viçosa, v. 42, n. 2, 2018a. http://dx.doi.org/10.1590/1806-90882018000200015

BESSI, D.; TANAKA, M.O.; COSTA, L.A.; CORREA, C.J.P; TONELLO, K.C. Forest restoration and hydrological parameters effects on soil water conditions: a structural equation modelling approach. Revista Brasileira de Recursos Hídricos, Porto Alegre, v. 23, 2018b. http://dx.doi.org/10.1590/2318-0331.231820180043

BIDDICK, M.; HUTTON, I.; BURNS, K.C. An alternative water transport system in land plants. Proceedings of the Royal Society B: Biological Sciences, v. 285, n. 1884, p. 3-5, 2018. https://doi.org/10.1098/rspb.2018.0995

BITTAR, T.B.; POUND, P.; WHITETREE, A.; MOORE, L.D.; VAN STAN, J.T. Estimation of Throughfall and Stemflow Bacterial Flux in a Subtropical Oak-Cedar Forest. Geophysical Research Letters, v. 45, n. 3, p. 1410-1418, 2018. https://doi.org/10.1002/2017GL075827

BIVAND, R.; RUNDEL, C. Rgeos: Interface to Geometry Engine - Open Source (’GEOS’). R package version 0.4-2. 2018. Available at: <https://CRAN.Rproject.org/package=rgeos>. Accessed on: Oct. 28, 2019.

BORK, C.; CASTRO, A.; LEANDRO, D.; CORRÊA, L., SIQUEIRA, T. Índices de precipitação extrema para os períodos atual (1961-1990) e futuro (2011-2100) na bacia do rio Taquari-Antas, RS. Revista Brasileira de Ciências Ambientais (Online), n. 46, p. 29-45, 2017. https://doi.org/10.5327/Z2176-947820170233

BRANCALION, P.H.S.; VIANI, R.A.G.; RODRIGUES, R.R.; GANDOLFI, S. Avaliação e monitoramento de áreas em processo de restauração. In: MARTINS, S. V. (ed.). Restauração Ecológica de Ecossistemas Degradados. Viçosa: Editora UFV, 2012. p. 262-293.

BURBANO-GARCÉS, M.; FIGUEROA-CASAS, A.; PEÑA, M. Bulk precipitation, throughfall and stemflow deposition of n-nh4 +, n-nh3 and n-no3 - in an Andean forest. Journal of Tropical Forest Science, v. 26, n. 4, p. 446-457, 2014.

CARLYLE-MOSES, D.E.; PRICE, A.G. Growing-season stemflow production within a deciduous forest of southern Ontario. Hydrological Processes, v. 20, p. 3651-3663, 2006. https://doi.org/10.1002/hyp.6380

CARLYLE-MOSES, D.E.; SCHOOLING, J.T. Tree traits and meteorological factors influencing the initiation and rate of stemflow from isolated deciduous trees. Hydrological Processes, v. 29, n. 18, p. 4083-4099, 2015. https://doi.org/10.1002/hyp.10519

CARNOL, M.; BAZGIR, M. Nutrient return to the forest floor through litter and throughfall under 7 forest species after conversion from Norway spruce. Forest Ecology and Management, v. 309, p. 66-75, 2013. https://doi.org/10.1016/j.foreco.2013.04.008

CATINON, M.; AYRAULT, S.; BOUDOUMA, O.; ASTA, J.; TISSUT, M.; RAVANEL, P. Atmospheric element deposit on tree barks: The opposite effects of rain and transpiration. Ecological Indicators, v. 14, n. 1, p. 170-177, 2012. https://doi.org/10.1016/j.ecolind.2011.07.013

CAYUELA, C.; LLORENS, P.; SÁNCHEZ-COSTA, E.; LEVIA, D.F.; LATRON, J. Effect of biotic and abiotic factors on inter- and intra-event variability in stemflow rates in oak and pine stands in a Mediterranean mountain area. Journal of Hydrology, v. 560, p. 396-406, 2018. https://doi.org/10.1016/j.jhydrol.2018.03.050

CHUYONG, G.B.; NEWBERY, D.M.; SONGWE, N.C. Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees. Biogeochemistry, v. 67, p. 73-91, 2004. https://doi.org/10.1023/B:BIOG.0000015316.90198.cf

CORTI, G.; AGNELLI, A.; COCCO, S.; CARDELLI, V.; MASSE, J.; COURCHESNE, F. Soil affects throughfall and stemflow under Turkey oak (Quercus cerris L.). Geoderma, v. 333, p. 43-56, 2019. https://doi.org/10.1016/j.geoderma.2018.07.010

DICK, G.; SCHUMACHER, M.V.; MOMOLLI, D.R.; VIERA, M. Nutrient Input via Incident Rainfall in a Eucalyptus dunnii Stand in the Pampa biome. Floresta e Ambiente, v. 25, n. 3, p. 1-9, 2018. https://doi.org/10.1590/2179-8087.055916

DINIZ, A.R.; PEREIRA, M.G.; BALIEIRO, F.D.C.; MACHADO, D.L.; MENEZES, C.E.G. Precipitação e aporte de nutrientes em diferentes estádios sucessionais de floresta Atlântica, Pinheiral - RJ. Ciência Florestal, v. 23, n. 3, p. 389-399, 2013. http://dx.doi.org/10.5902/1980509810550

ELSEVIER B.V. Scopus. 2019. Available at: <https://www.scopus.com>. Accessed on: Dec. 1, 2019.

ENDO, I.; OHTE, N.; ISEDA, K.; TANOI, K.; HIROSE, A.; KOBAYASHI, N.I.; MURAKAMI, M.; TOKUCHI, N.; OHASHI, M. Estimation of radioactive 137-cesium transportation by litterfall, stemflow and throughfall in the forests of Fukushima. Journal of Environmental Radioactivity, v. 149, p. 176-185, 2015. https://doi.org/10.1016/j.jenvrad.2015.07.027

FERNANDES, R.; VALVERDE, M. Análise da resiliência aos extremos climáticos de chuva: estudo preliminar na região de Mauá no ABC paulista – São Paulo. Revista Brasileira de Ciências Ambientais (Online), n. 44, p. 1-17, 2017. https://doi.org/10.5327/Z2176-947820170183

FLORES, J.; JURADO, E. Are nurse-protégé interactions more common among plantsfrom arid environments. Journal of Vegetation Science, v. 14, n. 6, p. 911-916, 2003.

GALETTI, G.; SILVA, J.; PIÑA-RODRIGUES, F.; PIOTROWISKI, I. Análise multicriterial da estabilidade ecológica em três modelos de restauração florestal. Revista Brasileira de Ciências Ambientais (Online), n. 48, p. 142-157, 2018. https://doi.org/10.5327/Z2176-947820180301

GARCIA-ESTRINGANA, P.; ALONSO-BLÁZQUEZ, N.; ALEGRE, J. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. Journal of Hydrology, v. 389, n. 3-4, p. 363-372, 2010. https://doi.org/10.1016/j.jhydrol.2010.06.017

GERMER, S.; WERTHER, L.; ELSENBEER, H. Have we underestimated stemflow? Lessons from an open tropical rainforest. Journal of Hydrology, v. 395, n. 3-4, p. 169-179, 2010. https://doi.org/10.1016/j.jhydrol.2010.10.022

GERMER, S.; ZIMMERMANN, A.; NEILL, C.; KRUSCHE, A. V.; ELSENBEER, H. Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest. Forest Ecology and Management, v. 267, p. 40-49, 2012. https://doi.org/10.1016/j.foreco.2011.11.041

GLINSKI, D.A.; PURUCKER, S.T.; VAN METER, R.J.; BLACK, M.C.; HENDERSON, W.M. Analysis of pesticides in surface water, stemflow, and throughfall in an agricultural area in South Georgia, USA. Chemosphere, v. 209, p. 496-507, 2018. https://doi.org/10.1016/j.chemosphere.2018.06.116

GUIDELLI, A. Dados de escoamento pelo tronco obtidos a partir da revisão da literatura do período 2006 a 2019. 2019. Available at: <https://figshare.com/articles/revisao-dadosxlsx/7770824>. Accessed on: May 21, 2020.

HERWITZ, S.R. Infiltration-excess caused by Stemflow in a cyclone-prone tropical rainforest. Earth Surface Processes and Landforms, v. 11, n. 4, p. 401-412, 1986. https://doi.org/10.1002/esp.3290110406

HIJMANS, R.J. Raster: geographic data analysis and modeling. R package version 2.8-4. 2018. Available at: <https://CRAN.R-project.org/package=raster>. Accessed on: Aug. 30, 2019.

HOFHANSL, F.; WANEK, W.; DRAGE, S.; HUBER, W.; WEISSENHOFER, A.; RICHTER, A. Controls of hydrochemical fluxes via stemflow in tropical lowland rainforests: Effects of meteorology and vegetation characteristics. Journal of Hydrology, v. 452-453, p. 247-258, 2012. https://doi.org/10.1016/j.jhydrol.2012.05.057

KOPPEN, W. Attempting to classify the climates preferably according to their relationship to the plant world. Geographische Zeitschrift, v. 6, p. 593-611, 1900. Available at: <https://upload.wikimedia.org/wikipedia/commons/d/df/Versuch_einer_Klassifikation_der_Klimate%2C_vorzugsweise_nach_ihren_Beziehungen_zur_Pflanzenwelt_Schluss_%281900%29.pdf>. Accessed on: Dec. 10, 2018.

KOTTEK, M.; GRIESER, J.; BECK, C.; RUDOLF, B.; RUBEL, F. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, v. 15, n. 3, p. 259-263, 2006. https://doi.org/10.1127/0941-2948/2006/0130

LACLAU, J.-P.; RANGER, J.; MORAES GONÇALVES, J.L.; MAQUÈRE, V.; KRUSCHE, A.V.; M’BOU, A.T.; NOUVELLON, Y.; SAINT-ANDRÉ, L.; BOUILLET, J.-P.; CASSIA PICCOLO, M.; DELEPORTE, P. Biogeochemical cycles of nutrients in tropical Eucalyptus plantations. Forest Ecology and Management, v. 259, n. 9, p. 1771-1785, 2010. https://doi.org/10.1016/j.foreco.2009.06.010

LEVIA, D.F.; GERMER, S. A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Reviews of Geophysics, v. 53, n. 3, p. 673-714, 2015. https://doi.org/10.1002/ 2015RG000479

LEVIA, D.F.; MICHALZIK, B.; BISCHOFF, S.; NÄTHE, K.; LEGATES, D.R.; GRUSELLE, M.C.; RICHTER, S. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions. Geophysical Research Letters, v. 40, n. 7, p. 1317-1321, 2013. https://doi.org/10.1002/grl.50305

LEVIA, D.F.; MICHALZIK, B.; NÄTHE, K.; BISCHOFF, S.; RICHTER, S.; LEGATES, D.R. Differential stemflow yield from European beech saplings: the role of individual canopy structure metrics. Hydrological Processes, v. 29, n. 1, p. 43-51, 2015. https://doi.org/10.1002/hyp.10124

LEVIA, D.F.; VAN STAN, J.T.; MAGE, S.M.; KELLEY-HAUSKE, P.W. Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size. Journal of Hydrology, v. 380, n. 1-2, p. 112-120, 2010. https://doi.org/10.1016/j.jhydrol.2009.10.028

LI, X.-Y.; LIU, L.Y.; GAO, S.Y.; MA, Y.J.; YANG, Z.P. Stemflow in three shrubs and its effect on soil water enhancement in semiarid loess region of China. Agricultural and Forest Meteorology, v. 148, n. 10, p. 1501-1507, 2008. https://doi.org/10.1016/j.agrformet.2008.05.003

LI, X.-Y.; YANG, Z.-P.; LI, Y.-T.; LIN, H. Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils. Hydrology and Earth System Sciences, v. 13, p. 1133-1144, 2009. https://doi.org/10.5194/hessd-6-1551-2009

LIMIN, S.G.; OUE, H.; SATO, Y.; BUDIASA, I.W.; SETIAWAN, B.I. Partitioning Rainfall into Throughfall, Stemflow, and Interception Loss in Clove (Syzygium Aromaticum) Plantation in Upstream Saba River Basin, Bali. Procedia Environmental Sciences, v. 28, p. 280-285, 2015. https://doi.org/10.1016/j.proenv.2015.07.036

LIU, H.; ZHANG, R.; ZHANG, L.; WANG, X.; LI, Y.; HUANG, G. Stemflow of water on maize and its influencing factors. Agricultural Water Management, v. 158, p. 35-41, 2015. https://doi.org/10.1016/j.agwat.2015.04.013

LIU, W.; FOX, J.E.D.; XU, Z. Nutrient budget of a montane evergreen broad-leaved forest at Ailao Mountain National Nature Reserve, Yunnan, southwest China. Hydrological Processes, v. 17, n. 6, p. 1119-1134, 2003. https://doi.org/10.1002/hyp.1184

LLOYD, C.R.; O. MARQUES, A.O. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology, v. 42, n. 1, p. 63-73, 1988. https://doi.org/10.1016/0168-1923(88)90067-6

LORENZON, A.S.; DIAS, H.C.T.; TONELLO, K.C. Escoamento da água da chuva pelo tronco das árvores em uma floresta estacional semidecidual. Revista Árvore, v. 39, n. 3, p. 423-430, 2015. http://dx.doi.org/10.1590/0100-67622015000300002

MANFROI, O.J.; KOICHIRO, K.; NOBUAKI, T.; MASAKAZU, S.; NAKAGAWA, M.; NAKASHIZUKA, T.; CHONG, L. The stemflow of trees in a Bornean lowland tropical forest. Hydrological Processes, v. 18, n. 13, p. 2455-2474, 2004. https://doi.org/10.1002/hyp.1474

MCKEE, A.J.; CARLYLE-MOSES, D.E. Modelling stemflow production by juvenile lodgepole pine (Pinus contorta var. latifolia) trees. Journal of Forestry Research, v. 28, p. 565-576, May 2017. https://doi.org/10.1007/s11676-016-0336-9

MICHALZIK, B.; LEVIA, D.F.; BISCHOFF, S.; NÄTHE, K.; RICHTER, S. Effects of aphid infestation on the biogeochemistry of the water routed through European beech (Fagus sylvatica L.) saplings. Biogeochemistry, v. 129, p. 197-214, Aug. 2016. https://doi.org/10.1007/s10533-016-0228-2

NÁVAR, J.; BRYAN, R. Interception loss and rainfall redistribution by three semi-arid growing shrubs in northeastern Mexico. Journal of Hydrology, v. 115, n. 1-4, p. 51-53, 1990. https://doi.org/10.1016/0022-1694(90)90197-6

NEWMAN, B.D.; WILCOX, B.P.; ARCHER, S.R.; BRESHEARS, D.D.; DAHM, C.N.; DUFFY, C.J.; MCDOWELL, N.G.; PHILLIPS, F.M.; SCANLON, B.R.; VIVONI, E.R. Ecohydrology of water-limited environments: a scientific vision. Water Resources Research, v. 42, n. 6, 2006. https://doi.org/10.1029/2005WR004141

OLIVEIRA JÚNIOR, J.C.; DIAS, H.C.T. Precipitação efetiva em fragmento secundário da mata atlântica. Revista Árvore, v. 29, n. 1, p. 9-15, 2005. https://doi.org/10.1590/S0100-67622005000100002

PICHLER, V.; GREGOR, J.; HOMOLÁK, M.; CAPULIAK, J.; BEBEJ, J.; VÁL'KA, J. Prediction of medium- and long-term changes in soil reaction in a beech forest based on observations in the beech stemflow zone. Folia Oecologica, v. 34, n. 2, p. 146-152, 2007.

PRESSLAND, A. Soil Moisture Redistribution as Affected by Throughfall and Stemflow in an Arid Zone Shrub Community. Australian Journal of Botany, v. 24, n. 5, p. 641-649, 1976.

PTATSCHECK, C.; MILNE, P.C.; TRAUNSPURGER, W. Is stemflow a vector for the transport of small metazoans from tree surfaces down to soil? BMC Ecology, v. 18, 2018. https://doi.org/10.1186/s12898-018-0198-4

RAICH, J. W. Understory palms as nutrient traps: A hypothesis. Brenesia, n. 21, p. 119-129, 1983.

R CORE TEAM. R: A Language and Environment for Statistical Computing. Vienna, 2018. Available at: <https://www.R-project.org>. Accessed on: Aug. 15, 2018.

ROCHA-URIARTT, L.; CASSANEGO, M.; BECKER, D.; DROSTE, A.; SCHMITT, J. Diagnóstico ambiental de mata ciliar: uma análise integrada de parâmetros botânicos, meteorológicos e da genotoxicidade do ar atmosférico. Revista Brasileira de Ciências Ambientais (Online), n. 35, p. 102-115, 2015.

RODRIGUES, R. R.; BRANCALION, P. H. S.; ISERNHAGEN, I. Pacto pela restauração da mata atlântica: referencial dos conceitos e ações de restauração florestal (LERF/ESALQ). São Paulo: Instituto BioAtlântica, 2009.

ROSIER, C.L.; LEVIA, D.F.; VAN STAN, J.T.; AUFDENKAMPE, A.; KAN, J. Seasonal dynamics of the soil microbial community structure within the proximal area of tree boles: Possible influence of stemflow. European Journal of Soil Biology, v. 73, p. 108-118, 2016. https://doi.org/10.1016/j.ejsobi.2016.02.003

SANTOS TERRA, M.C.N.; MELLO, C.R.; MELLO, J.M.; OLIVEIRA, V.A.; NUNES, M.H.; SILVA, V.O.; RODRIGUES, A.F.; ALVES, G.J. Stemflow in a neotropical forest remnant: vegetative determinants, spatial distribution and correlation with soil moisture. Trees - Structure and Function, v. 32, p. 323-335, 2018. https://doi.org/10.1007/s00468-017-1634-3

SCHMID, S.; BURKARD, R.; FRUMAU, K.F.A.; TOBÓN, C.; BRUIJNZEEL, L.A.; SIEGWOLF, R.; EUGSTER, W. Using eddy covariance and stable isotope mass balance techniques to estimate fog water contributions to a Costa Rican cloud forest during the dry season. Hydrological Processes, v. 25, n. 3, p. 429-437, 2011. https://doi.org/10.1002/hyp.7739

SCHROTH, G.; ELIAS, M.E.A.; UGUEN, K.; SEIXAS, R.; ZECH, W. Nutrient fluxes in rainfall, throughfall and stemflow in tree-based land use systems and spontaneous tree vegetation of central Amazonia. Agriculture, Ecosystems and Environment, v. 87, n. 1, p. 37-49, 2001. https://doi.org/10.1016/S0167-8809(00)00294-2

SCHWINNING, S.; SALA, O.E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, v. 141, p. 211-220, 2004. https://doi.org/10.1007/s00442-004-1520-8

SCIELO. SciELO: Scientific Electronic Library Online. 2019.

SHINZATO, E.T.; TONELLO, K.C.; GASPAROTO, E.A.G.; VALENTE, R.O.A. Stemflow in different forest fragments of Ipanema National Forest in Iperó, Brazil. Scientia Forestalis/Forest Sciences, v. 39, n. 92, p. 395-402, 2011. https://doi.org/10.13140/2.1.3996.2242

SIEGERT, C.M.; LEVIA, D.F. Seasonal and meteorological effects on differential stemflow funneling ratios for two deciduous tree species. Journal of Hydrology, v. 519, parte A, p. 446-454, 2014. https://doi.org/10.1016/j.jhydrol.2014.07.038

SIEGERT, C.M.; LEVIA, D.F.; LEATHERS, D.J.; VAN STAN, J.T.; MITCHELL, M.J. Do storm syn- optic patterns affect biogeochemical fluxes from temperate deciduous forest canopies? Biogeochemistry, v. 132, p. 273-292, 2017. https://doi.org/10.1007/s10533-017-0300-6

SILVA, M.C.; VALVERDE, M. Cenário futuro da disponibilidade hídrica na bacia do Alto Tietê. Revista Brasileira de Ciências Ambientais (Online), n. 43, p. 114-130, 2017. https://doi.org/10.5327/Z2176-947820170185

SOCIETY FOR ECOLOGICAL RESTORATION INTERNATIONAL. The SER International Primer on Ecological Restoration. Tucson: Society for Ecological Restoration International, 2004. Available at: <https://cdn.ymaws.com/www.ser.org/resource/resmgr/custompages/publications/ser_publications/ser_primer.pdf>. Accessed on: May 23, 2017.

SOUZA, H.; VITORINO, M. I.; VASCONCELOS, S.; MARINHO, E.; BISPO, C. J. Influência de sistemas precipitantes sobre a produção de serapilheira em manguezal da costa amazônica. Revista Brasileira de Ciências Ambientais (Online), n. 54, p. 105-118, 30 dez. 2019. https://doi.org/10.5327/Z2176-947820190571

SPENCER, S.A.; VAN MEERVELD, H.J. Double funnelling in a mature coastal British Columbia forest: spatial patterns of stemflow after infiltration. Hydrological Processes, v. 30, n. 22, p. 4185-4201, 2016. https://doi.org/10.1002/hyp.10936

SU, L.; ZHAO, C.; XU, W.; XIE, Z. Hydrochemical Fluxes in Bulk Precipitation, Throughfall, and Stemflow in a Mixed Evergreen and Deciduous Broadleaved Forest. Forests, v. 10, n. 6, p. 507, 2019. https://doi.org/10.3390/f10060507

TANAKA, N.; LEVIA, D.; IGARASHI, Y.; YOSHIFUJI, N.; TANAKA, K.; TANTASIRIN, C.; NANKO, K.; SUZUKI, M.; KUMAGAI, T. What factors are most influential in governing stemflow production from plantation-grown teak trees? Journal of Hydrology, v. 544, p. 10-20, 2017. https://doi.org/10.1016/j.jhydrol.2016.11.010

TU, L.; HU, H.; ZHANG, J.; HUANG, L.; XIAO, Y.; CHEN, G.; HU, H.L.; LIU, L.; ZHENG, J.; XU, Z.; CHEN, L. Nitrogen Distribution and Cycling through Water Flows in a Subtropical Bamboo Forest under High Level of Atmospheric Deposition. PLoS One, v. 8, n. 10, p. 2-12, 2013. https://doi.org/10.1371/journal.pone.0075862

VAN STAN, J.T.; GORDON, D.A. Mini-Review: Stemflow as a Resource Limitation to Near-Stem Soils. Frontiers in Plant Science, v. 9, p. 248, 2018. https://doi.org/10.3389/fpls.2018.00248

VAN STAN, J.T.; LEWIS, E.S.; HILDEBRANDT, A.; REBMANN, C.; FRIESEN, J. Impact of interacting bark structure and rainfall conditions on stemflow variability in a temperate beech-oak forest, central Germany. Hydrological Sciences Journal, v. 61, n. 11, p. 2071-2083, 2016. https://doi.org/10.1080/02626667.2015.1083104

YUAN, C.; GAO, G.; FU, B. Comparisons of stemflow and its bio-/abiotic influential factors between two xerophytic shrub species. Hydrology and Earth System Sciences, v. 21, p. 1421-1438, 2017. https://doi.org/10.5194/hess-21-1421-2017

YUAN, C.; GAO, G.; FU, B. Stemflow of a xerophytic shrub (Salix psammophila) in northern China: Implication for beneficial branch architecture to produce stemflow. Journal of Hydrology, v. 539, p. 577-588, 2016. https://doi.org/10.1016/j.jhydrol.2016.05.055

ZHANG, Y.W.; DENG, L.; YAN, W.M.; SHANGGUAN, Z.P. Interaction of soil water storage dynamics and long-term natural vegetation succession on the Loess Plateau, China. Catena, v. 137, p. 52-60, 2016. https://doi.org/10.1016/j.catena.2015.08.016

ZHANG, Y.W.; WANG, X.; HU, R.; PAN, Y.X. Stemflow volume per unit rainfall as a good variable to determine the relationship between stemflow amount and morphological metrics of shrubs. Journal of Arid Environments, v. 141, p. 1-6, 2017. https://doi.org/10.1016/j.jaridenv.2017.02.002

ZIMMERMANN, A.; UBER, M.; ZIMMERMANN, B.; LEVIA, D.F. Predictability of stemflow in a species-rich tropical forest. Hydrological Processes, v. 29, n. 23, p. 4947-4956, 2015. https://doi.org/10.1002/hyp.10554

ZOU, C.B.; CATERINA, G.L.; WILL, R.E.; STEBLER, E.; TURTON, D. Canopy interception for a tallgrass prairie under juniper encroachment. PLoS One, v. 10, n. 11, p. 1-19, 2015. https://doi.org/10.1371/journal.pone.0141422

Downloads

Published

2021-02-04

How to Cite

Tonello, K. C., Rosa, A. G., Salim, J. A., Correa, C. J. P., & Lima, M. T. (2021). The dynamics of knowledge about stemflow: a systematic review. Revista Brasileira De Ciências Ambientais, 56(1), 16–27. https://doi.org/10.5327/Z2176-947820200675