Wood density of forest species in integrated crop-livestock-forest system in the Brazilian Amazon: challenges and opportunities for Bertholletia excelsa, Dipteryx odorata, and Khaya grandifoliola

Authors

DOI:

https://doi.org/10.5327/Z2176-94782370

Keywords:

young forest plantations; physical properties of wood; bioeconomic potential; Pará.

Abstract

Wood density is the physical property directly related to the timber potential of a species and influences the environmental service of carbon storage and sequestration. Therefore, the objective of this study was to evaluate the wood density at different moisture levels (apparent, anhydrous, and basic) of the species Bertholletia excelsa, Dipteryx odorata, and Khaya grandifoliola in a young forest stand cultivated in an integrated crop-livestock-forest system. The Technological Reference Unit, established in 2010, highlighted the necessity for management interventions by 2021 to prevent excessive shading and eliminate phenotypically undesirable species. Material samples were harvested at five heights along the commercial stem to analyze wood density (anhydrous, apparent, and basic). Our results revealed that D. odoratahad the highest densities (0.99, 0.91, and 0.83 g/cm3), while B. excelsa and K. grandifoliola displayed lower densities (0.68, 0.61, 0.55 g/cm3 and 0.61, 0.56, 0.51 g/cm3, respectively). Notably, D. odorata exhibited an increasing basic density from base to top, while K. grandifoliola demonstrated greater homogeneity along its stem. The presented results provide robust technical support to inform decision-making on the use of native and exotic species in integrated production systems, as well as emphasizing the potential of the crop-livestock-forest system as a sustainable production practice.

Downloads

Download data is not yet available.

References

Associação Brasileira de. Normas Técnicas (ABNT), 2003. NBR 11941: Madeira - Determinação da densidade básica. ABNT, Rio de Janeiro, 6 p.

Altgen, M.; Fröba, M.; Gurr, J.; Krause, A.; Ohlmeyer, M.; Sazama, U.; Willems, W.; Nopens, M., 2023. Limits in reaching the anhydrous state of wood and cellulose. Cellulose, v. 30 (5), 6247-6257. https://doi.org/10/s10570-023-05293-7.

Balbino, L.C.; Barcellos, A.O.; Stone, L.F., 2011. Framework: Crop-Livestock-Forest Integration (ILPF). Embrapa Brasília. 130 p (Accessed November 1, 2023) at:. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/923530/1/balbino01.pdf.

Bamber, R.K.; Horne, R.; Graham-Higgs, A., 1982. Effect of fast growth on the wood properties of Eucalyptus grandis. Australian Forestry Research, v. 12 (2), 163-167.

Behling, M.; Martinez, G.B.; Silva, A.R.; Oliveira, T.K. de; Cipriani, H.N., 2021. Eucalyptus in crop-livestock-forest integration (ILPF) systems in the Amazon. In: Oliveira, E.B.; Pinto Junior, J.E. (Eds.), Eucalyptus and Embrapa: Four decades of research and development. Embrapa, Brasília, p. 1043-1045.

Bonfatti Júnior, E.A.; Lengowski, E.C.; Cabral, B.M.; Oliveira, T.W.G.; Barros, J.M.R.; Oliveira, R.S.; Andrade, A.S.; Klock, U.; Silva, D.A., 2023. Basic wood density, fiber dimensions, and wood chemical composition of four Eucalyptus species planted. Revista Árvore, v. 47, e4704. https://do.or/1/1806-908820230000004.

Box, G.; Cox, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), v. 26 (2), 211-243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.

Brasil, 2006. Decreto nº 5.975/2006. Regulamenta os arts. 12, parte final, 15, 16, 19, 20 e 21 da Lei nº 4.771, de 5 de setembro de 1965, o art. 4º, inciso III, da Lei nº 6.938, de 31 de agosto de 1981, o art. 2º da Lei nº 10.650, de 16 de abril de 2003; altera e acresce dispositivos aos Decretos nº 3.179, de 21 de setembro de 1999, e 3.420, de 20 de abril de 2000; e dá outras providências (Accessed November 1, 2023) at:. https://www.planalto.gov.br/ccivil_03/_Ato2004-006/2006/Decreto/D5975.htm#art32.

Brasil, 2012. Lei nº 12.651/2012. Dispõe sobre a proteção da vegetação nativa; altera as Leis nº 6.938, de 31 de agosto de 1981, nº 9.393, de 19 de dezembro de 1996, e nº 11.428, de 22 de dezembro de 2006; revoga as Leis nº 4.771, de 15 de setembro de 1965, e nº 7.754, de 14 de abril de 1989, e a Medida Provisória nº 2.166-67, de 24 de agosto de 2001; e dá outras providências (Accessed November 1, 2023) at:. https://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12651.htm.

Brasil, 2013. Lei nº 12.805, de 29 de abril de 2013. Institui a Política Nacional de Integração Lavoura-Pecuária-Floresta e altera a Lei nº 8.171, de 17 de janeiro de 1991. DOU de 30 de abril de 2013 (Accessed November 1, 2023) at:. https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2013/lei/l12805.htm.

Brasil-Neto, A.B.; Brasil, N.M.Q.X.; Andrade, P.I.L.; Sampaio, A.C.F.; Noronha, N.C.; Carvalho, E.J.M.; Silva, A.R., 2021. The commercial tree species Dipteryx odorata improves soil physical and biological attributes in abandoned pastures. Ecological Engineering, v. 160 (2), 106143. https://doi.org/10.1016/j.ecoleng.2020.106143.

Cândido, A.C.T.F.; Martorano, L.G.; Cândido, B.U.F.; Nascimento, W.; Dias, C.T.S.; Lisboa, L.S.S.; Fernandes, P.C.C.; Silva, A.R.; Dias-Filho, M.B.; Beldini, T.P., 2023. Infrared Thermal Profiles in Silvopastoral and Full-Sun Pastures in the Eastern Amazon, Brazil. Forests, v. 14, 1463. https://doi.org/10.3390/f14071463.

Carauta, M.; Guzmán-Bustamante, I.; Meurer, K.; Hampf, A.; Troost, C.; Rodrigues, R.; Berger, T., 2018. Assessing the full distribution of greenhouse gas emissions from crop, livestock and commercial forestry plantations in Brazil's Southern Amazon. In: 30th International Conference of Africultural Economists, Vancouver, pp. 1-36. https://doi.org/10.22004/ag.econ.277118.

Christoforo, A.L.; Couto, N.G.; Almeida, J.P.B.; Aquino, V.B. de M.; Lahr, F.A.R., 2020. Apparent density as an estimator of wood properties obtained in tests where failure is fragile. Agricultural Engineering, v. 40 (1), 105-112. https://doi.org/10.1590/1809-4430-Eng.Agric.v40n1p105-112/2020.

Cortes, J.P.S.; Coudel, E.; Piraux, M.; Silva, M.P.; Santos, B.A.; Folhes, R.; Silva, R.G.P., 2020. What are the prospects for family farming in a context of agribusiness expansion? Participatory zoning with community representatives from the Planalto Santareno. Franco-Brazilian Journal of Geography, (45). https://doi.org/10.4000/conns.28077.

Costa, D.C.; Martorano, L.G.; Moraes, J.R.S.C.; Lisboa, L.S.S.; Stolf, R., 2018. Temporal dynamics of the water footprint of soybean crops in a grain hub in western Pará, Amazon. Environment and Water Journal, v. 13 (5), e2051. https://doi.org/10.4136/ambi-agua.2051.

Dimou, V.; Tsaliki, A.; Kitikidou, K., 2023. Radial and longitudinal density variations in Abies cephalonica and Pinus halepensis. Journal of Forestry Research, v. 34, 853-863. https://doi.org/10.1007/s11676-022-01521-1.

Downes, G.M.; Hudson, I.L.; Raymond, C.A.; Dean, G.H.; Michell, A.J.; Schimleck, R., 1997. Sampling plantation eucalypts for wood and fiber properties. CSIRO, Hobart. https://doi.org/10.1071/9780643105287.

Eloy, E.; Mangini, T.de.S.; Nardini, C.; Caron, B.O.; Trevisan, R.; Santos, A.D. dos., 2024. Correlation of anatomy with physical properties of wood species from an agroforestry system. Tree Journal, v. 48 (1), e4815. https://doi.org/10.53661/1806-9088202448263657.

Fearnside, P.M., 1997. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management, v. 90 (1), 59-89. https://doi.org/10.1016/S0378-1127(96)03840-6.

Fernandes, P.C.C.; Chaves, S.S.F.; Martorano, L.G., 2019. Crop-livestock-forest integration in the North region: soil carbon assessments at Fazenda Vitória in Paragominas, Pará. In: Bungenstab, D.J.; Almeida, R.G.; Laura, V.A.; Balbino, L.C.; Ferreira, A.D. ILPF: innovation with the interaction of crops, livestock and forestry. Embrapa, Brasília, pp. 628-640.

Ferreira, M.D.; de Melo, R.R.; Tonini, H.; Pimenta, A.S.; Gatto, D.A.; Beltrame, B.; Stangerlin, D.M., 2019. Physical–mechanical properties of wood from a eucalyptus clone planted in an integrated crop-livestock-forest system, International Wood Products Journal, 2042-6453. https://doi.org/10.1080/20426445.2019.1706137.

França, T.S.F.A.; Arantes, M.D.C.; Paes, J.B.; Vidaurre, G.B.; Oliveira, J.T.S.; Barauna, E.E.P., 2015. Anatomical characteristics and physical-mechanical properties of wood from two species of African mahogany. Cerne, v. 21 (4), 633-640. https://doi.org/10.1590/01047760201521041877.

Gendvilas, V.; Neyland, M.; Rocha-Sepúlveda, M.F.; Downes, G.M.; Hunt, M.; Jacobs, A.; Williams, D.; Vega, M.; O'Reilly-Wapstra, J., 2022. Effects of thinning on the longitudinal and radial variation in wood properties of Eucalyptus nitens. Forestry, v. 95, 504-517. https://doi.org/10.1093/forestry/cpac007.

Gomes, G.S.L.; Caldeira, M.V.W.; Gomes, R.; Duarte, V.B.R.; Momolli, D.R.; Faria, J.C.T.; Godinho, T. de O.; Trazzi, P.A.; Sobrinho, L.S.; Oliveira Neto, S.N .de; Schumacher, M.V., 2024. Biomass Production and Nutritional Sustainability in Different Species of African Mahogany. Forests, v. 15, 1951. https://doi.org/10.3390/ f15111951.

Guerreiro, Q.L. de M.; Oliveira Júnior, R.C. de; Santos, G.R. dos; Ruivo, M. de L.P.; Beldini, T.P.; Carvalho, E.J.M.; Silva, K.E. da Guedes, M.C.; Santos, P. R.B., 2017. Spatial variability of soil physical and chemical aspects in a Brazil nut tree stand in the Brazilian Amazon. African Journal of Agricultural Research, v. 12 (4), 237-250. https://doi.org/10.5897/AJAR2016.11766.

Herrero-Jáuregui, C.; Guariguata, M.R.; Cárdenas, D.; Vilanova, E.; Robles, M.; Licona, J.C.; Nalvarte, W., 2013. Assessing the extent of “conflict of use” in multipurpose tropical forest trees: A regional view. Journal of Environmental Management, v. 130, 40-47. https://doi.org/10.1016/j.jenvman.2013.08.044.

Honorio-Coronado, E.N.; Blanc-Jolivet, C.; Mader, M.; García-Dávila, C.R.; Gomero, D.A.; del Castillo-Torres, D.; Flores-Llampazo, G.; Hidalgo-Pizango, G.; Sebbenn, A.M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Tysklind, N.; Troispoux, V.; Massot, M.; Carvalho, C.; de Lima, H.C.; Cardoso, D.; Degen, B., 2020. SNP markers as a successful molecular tool for assessing species identity and geographic origin of trees in the economically important South American legume genus Dipteryx. Journal of Heredity, v. 111 (4), 346-356. https://doi.org/10.1093/jhered/esaa011.

Hsing, T.Y.; Paula, N.F.; Paula, R.C., 2016. Dendrometric, chemical characteristics and basic density of wood from hybrids Eucalyptus grandis x Eucalyptus urophylla. Forest Science, v. 26 (1), 273-283. https://doi.org/10.5902/1980509821119.

ILPF Network, 2021. ICLF in Numbers: 2020/2021 (Accessed November 05, 2024) at:. https://redeilpf.org.br/ilpf-em-numeros/.

Kohl, M.; Neupane, P.R.; Lotfiomran, N., 2017. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. Plos One, v. 12 (8), e0181187. https://doi.org/10.1371/journal.pone.0181187.

Latreille, A.J.; Wünsch, D.G.; Souza, J.T.; Talgatti, M.; Silveira, A.G.; Oliveira, L.H.; Santini, E.J., 2018. Physico-mechanical properties of wood Dipteryx alata, Astronium graveolens, Bowdichia virgilioides and Eucalyptus grandis. Revista do Instituto Florestal, v. 30 (2), 143-150. https://doi.org/10.24278/2178-5031.201830203.

Lima, F.B. de; Souza, Á.N. de; Matricardi, E.A.T.; Gaspar, R. de O.; Lima, I.B. de; Souza, H.J. de; Santos, M.L. de; Miguel, E.P.; Borges, L.A.C.; Santos, C.R.C. de; Gouveia, F.N.; Lima, M.F.B., 2024. Alternative tree species for sustainable forest management in the Brazilian Amazon. Forests, v. 15 (10), 1763. https://doi.org/10.3390/f15101763.

Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P. R.; Lobo, F. D.; Ribeiro, G.; Vincent, G., 2020. Impacts of degradation on water, energy, and carbon cycling of the Amazon tropical forests. Journal of Geophysical Research: Biogeosciences, v. 125 (8), e2020JG005677. https://doi.org/10.1029/2020JG005677.

Lopes, L.S.S.; Pauletto, D.; Gomes, E.S.C.; Silva, A.F.; Oliveira, T.G.S.; Silva, J.A.G.; Baloneque, D.D.; Martorano, L.G., 2023. Dendrometric relationships and Biomass in commercial plantations of Dipteryx spp. in the Eastern Amazon. Forests, v. 14 (11), 2167. https://doi.org/10.3390/f14112167.

Martorano, L.G.; Pereira, L.C.; Nechet, D., 1993. Climate typology of the state of Pará – Adaptation of the Koppen method. Bulletin of Theoretical Geography. v. 23, 45-46.

Martorano, L.G.; de Moraes, J.R. da S.C.; Silva, L.K.X.; Fernandes, P.C.C.; Amaral, J.M. do; Lisboa, L.S.; Neves, K.A.L.; Pacheco, A.; Beldini, T.P.; Aparecido, L.E. de O., da Silva, W. C.; Godinho, V. de P.C., 2021a. Agricultural and livestock production in the Amazon: A reflection on the necessity of adoption of integrated production strategies in the western region of the state of Para. Australian Journal of Crop Science, v. 15 (8), 1102-1109. https://search.informit.org/doi/10.3316/informit.179690707250399.

Martorano, L.G.; Soares, W.B.; Moraes, J.R.S.C.; Nascimento, W.; Aparecido, L.E.O.; Villa, P.M., 2021b. Climatology of Air Temperature in Belterra: Thermal Regulation Ecosystem Services Provided by the Tapajós National Forest in the Amazon. Revista Brasileira de Meteorologia, v. 36 (2), 327-337. https://doi.org/10.1590/0102-7786362001.

Medeiros, T.K.A.; Wadt, L.H.O.; Kainer, K.A., 2024. Traditional knowledge of tree “bleeding” in Brazil nut tree (Bertholletia excelsa) management. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 59, e1858. https://doi.org/10.5327/Z2176-94781858.

Momolli, D.R.; Caldeira, M.V.W.; Gomes, G.S.L.; Gomes, R.; Duarte, V.B.R.; Godinho, T. de O.; da Silva, J.G.M.; dos Santos, V.B.; Vidaurre, G.B.; Faria, J.C.T.; Schumacher, M.V.; Pereira, M.G., 2024. Stem longitudinal gradient for basic density, carbon, nitrogen, and CN ratio in Khaya spp.: improved correlation using diameter instead of commercial height. Forests, v. 15 (1923), 2-18. https://doi.org/10.3390/f15111923.

Monteiro, A.; Barreto-Mendes, L.; Fanchone, A.; Morgavi, D.P.; Pedreira, B.C.; Magalhães, C.A.S.; Abdalla, A.L.; Eugène, M., 2024. Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome. Science of the Total Environment, v. 906, 167396. https://doi.org/10.1016/j.scitotenv.2023.167396.

Mukaila, Y.O.; Ajao, A.A.; Moteetee, A.N., 2021. Khaya grandifoliola C. DC. (Meliaceae: Sapindales): Ethnobotany, phytochemistry, pharmacological properties, and toxicology. Journal of Ethnopharmacology, v. 278, 114253. https://doi.org/10.1016/j.jep.2021.114253.

Nwaogu, C.; Cherubin, M.R., 2024. Chapter one - integrated agricultural systems: the 21st-century nature-based solution to solve global FEEES challenges. Advances in Agronomy, v. 185, 1-73. https://doi.org/10.1016/bs.agron.2024.02.003.

Oliveira, L.Z.; Uller, H.F.; Klitzke, A.R.; Eleotério, J.R.; Vibrans, A.C., 2019. Towards the fulfillment of a knowledge gap: wood densities for species of the subtropical Atlantic Forest. Data, v. 4 (3), 104. https://doi:10.3390/data4030104.

Pimenta, E.M.; Ramalho, F.M.G.; Dambroz, G.B.V.; Couto, A.M.; Campoe, O.C.; Hein, P.R.G., 2024. Planting spacing and genotype affected tree growth and variation in wood density and lignin content along Eucalyptus trunks. Industrial Crops and Products, v. 222, 119595. https://doi.org/10.1016/j.indcrop.2024.119595.

Poorter, L.; Van der Sande, M.T.; Thompson, J.; Arets, E.J.M.M.; Alarcón, A.; Álvarez-Sánchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzmán, G.; Boit, A.; Bongers, F.; Carvalho, F.A.; Casanoves, F.; Cornejo-Tenorio, G.; Costa, F.R.C.; Castilho, C.V.; Duivenvoorden, J.F.; Dutrieux, L.P.; Enquist, B.J.; Fernández-Méndez, F.; Finegan, B.; Gormley, L.H.L.; Healey, J.R.; Hoosbeek, M.R.; Ibarra-Manríquez, G.; Junqueira, A.B.; Levis, C.; Licona, J.C.; Lisboa, L.S.; Magnusson, W.E.; Martínez-Ramos, M.; Martínez-Yrizar, A.; Martorano, L.G.; Maskell, L.C.; Mazzei L.; Meave, J.A.; Mora, F.; Muñoz, R.; Nytch, C.; Pansonato, M.P.; Parr, T.W.; Paz, H.; Pérez-García, E.A.; Rentería, L.Y.; Rodríguez-Velazquez, J.; Rozendaal, D.M.A.; Ruschel, A.R.; Sakschewski, B.; Salgado-Negret, B., Schietti, J.; Simões, M.; Sinclair, F.L.; Souza, P.F.; Souza, F.C.; Stropp, J.; Ter Steege, H.; Swenson, N.G.; Thonicke, K.; Toledo, M.; Uriarte, M.; Van der Hout, P.; Walker, P.; Zamora, N.; Peña-Claros, M., 2015. Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, v. 24 (11), 1314-1328. https://doi.org/10.1111/geb.12364.

Projeto de Monitoramento do Desmatamento na Amazônia Legal por Satélite (PRODES), 2024. PRODES Amazônia (Accessed November 05, 2024) at:. http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes.

Ramalho, F.M.G.; Pimenta, E.M.; Goulart, C.P.; Almeida, M.N.F.; Vidaurre, G.B.; Hein, P.R.G., 2019. Effect of stand density on longitudinal variation of wood and bark growth in fast-growing Eucalyptus plantations. iForest v. 12, 527-532. https://doi.org/10.3832/ifor3082-012.

Reis, C.A.F.; Kalil Filho, A.N.; Aguiar, A.V.; Moraes-Rangel, A.C., 2019. Characterization of species belonging to the genus Khaya of interest in Brazil. In: Reis, C.A.F., Oliveira, E.B., Santos, A.M. African mahogany (Khaya spp.): current affairs and prospects for cultivation in Brazil. Embrapa, Brasília, pp. 13-49 (Accessed October 12, 2023) at:. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/202696/1/Mogno-Africano-08-10-2019.pdf.

Reis, J.C.; Stachetti Rodrigues, G.; de Barros, I.; Ribeiro Rodrigues, R.deA.; Garrett, R.D.; Valentim, J.F.; Kamoi, M.Y.T.; Michetti, M.; Wruck, F.J.; Rodrigues-Filho, S.; Pimentel, P.E.O.; Smukler, S., 2021. Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. Journal of Cleaner Production, v. 283, 124580. https://doi.org/10.1016/j.jclepro.2020.124580.

Rezende, M.A. de; Escobedo, J.F., 1988. Volumetric shrinkage and apparent density of wood as a function of moisture. IPEF, v. 39, 33-40.

Ribeiro, A.; Ferraz Filho, A.C.; Scolforo, J.R.S., 2017. The cultivation of African mahogany (Khaya spp.) and the growth of activity in Brazil. Forest and Environment, v. 24, e00076814. https://doi.org/10.1590/2179-8087.076814.

Rocha, S.M.G.; Vidaurre, G.B.; Pezzopane, J.E.M.; Almeida, M.N.F.; Carneiro, R.L.; Campo, O.C.; Scolforo, H.F.; Alvares, C.A.; Neves, J.C.L.; Xaviera, A.C.; Figura, M.A., 2020. Influence of climatic variations on production, biomass and density of wood in eucalyptus clones of different species. Forest Ecology and Management, v. 473, 118290. https://doi.org/10.1016/j.foreco.2020.118290.

Romero, F.M.B.; Novais, T.N.O.; Jacobine, L.A.G.; Bezerra, E.B.; Lopes, R. B. de C.; de Holanda, J.S.; Reyna, E.F.; Fearnside, P. M., 2024. Basic wood density in large trees: Impacts on biomass estimates in the southwestern Brazilian Amazon. Forests, v. 15 (5), 734. https://doi.org/10.3390/f15050734.

Santana, A.C.; Santana, Á.L.; Santana, Á.L.; Oliveira, G.M.T.S.; Santos, M.A.S., 2023. Bioeconomic evaluation of an agroforestry system and the potential to recover degraded areas and capitalize producers in the state of Pará, Brazilian Amazon, v. 61, 439-455. https://doi.org/10.5380/dma.v61i0.80516.

Santos, L.H.O.; Alexandre, F.S.; Mendoza, Z.M.S.H.; Souza, E.C.; Borges, P.H.M.; Mariano, R.R.; Diaz, L.M.G.R.; Nunes, C.A., 2020. Chemical and physical characteristics of African mahogany wood (Khaya ivorensis A. Chev.). Nativa, v. 8 (3), 361-366. http://doi.org/10.31413/nativa.v8i3.9526.

Santos, P.L.; Santos, E.A.A.; Magalhães, M.R.R.; Santos, V.B.; Baraúna, E.E.P., 2021. Determination of extractives and basic density of wood Brosimum lactescens (S. Moore) C.C. Berg for productive purposes. In: Evangelista WV. Native and planted wood from Brazil: quality, research and current affairs. Editora Científica, São Paulo, pp. 372-381.

Schulz, H.R.; Gallio, E.; Acosta, A.P.; Gatto, D.A., 2019. Evaluation of physical properties of six forest wood species. Journal Materia, v. 25 (3), e-1279. https://doi.org/10.1590/S1517-707620200003.1095.

Sette Junior, C.R.; de Oliveira, I.R.; Tomazello Filho, M.; Yamaji, F.M.; Laclau, J.P., 2012. Effect of age and sampling position on wood density and anatomical characteristics of Eucalyptus grandis. Revista Árvore, v. 36 (6), 1183-1190. https://doi.org/10.1590/S0100-67622012000600019.

Silva, J.C.N.; Silva, A.R.; Veloso, C.A.C.; Dantas, E.F.; Sacramento, J.A.A.S., 2018. Aggregation, carbon, and total soil nitrogen in crop-livestock-forest integration in the Eastern Amazon. Brazilian Journal of Agricultural and Environmental Engineering, v. 22 (12), 837-842. https://doi.org/10.1590/1807-1929/agriambi.v22n12p837-842.

Silva-Neto, P.A.; Silva, J.S.; Gomes, L.F., 2023. Cumaru (Dipteryx odorata): scientific and technological prospecting. Prospecting Notebooks, v. 16 (1), 295-311. https://doi.org/10.9771/cp.v15i4.49735.

Silveira, J.G. da; Oliveira Neto, S.N. de; Canto, A.C.B. do; Leite, F.F.G.D.; Cordeiro, F.R.; Assad, L.T.; Silva, G.C.C.; Marques, R. de O.; Dalarme, M.S.L.; Ferreira, I.G.M.; da Conceição, M.C.G.; Rodrigues, R.A.R., 2022. Land use, land cover change and sustainable intensification of agriculture and livestock in the Amazon and the Atlantic Forest in Brazil. Sustainability, v. 14 (5), 2563. https://doi.org/10.3390/su14052563.

Sousa, B.C.M. de; Castro, S.P. de; Lourido, K.A.; Kasper, A.A.M.; Paulino, G. de S.; Delarmelina, C.; Duarte, M.C.T.; Sartoratto, A.; Vieira, T.A.; Lustosa, D.C.; Barata, L.E.S., 2022. Identification of coumarins and antimicrobial potential of ethanolic extracts of Dipteryx odorata and Dipteryx punctata. Molecules, v. 27 (18), 5837. https://doi.org/10.3390/molecules27185837.

Sousa, W.C.S.; Barbosa, L.J.; Soares, A.A.V.; Goulart, S.L.; Protásio T.P., 2019. Wood colorimetry for the characterization of amazonian tree species: a subsidy for a more efficient classification. Cerne, v. 25 (4), p.451-462. https://doi.org/10.1590/01047760201925042650.

Souza, A.O.; Santos, A.R.; Lopes, S.F.; Soares, T.R., 2023. Harvesting Bertholletia excelsa Bonpl. in a western Amazon rural community: local ecological knowledge and meaning to “nut-crackers”. Journal of Ethnobiology and Ethnomedicine, v. 19 (61), 2-12. https://doi.org/10.1186/s13002-023-00635-y.

Souza, C.R.; Baldoni, A.B.; Tonini, H.; Maia, V.A.; Santos, R.M.; Luvison, M.; Santos, J.P., 2023. Ecological patterns and conservation opportunities with carbon credits in brazil nut groves: a study-case in the southeast amazon. Cerne, v. 29, e-103164. https://doi.org/10.1590/01047760202329013164.

Souza, I.M.D.; Sagrilo, E.; de Oliveira Júnior, J.O.L.; Araújo, M.D.M.; Muniz, L.C.; Costa, J.B.; Pompeu, R.C.F.F.; de Sousa, D.C.; de Andrade, H.A.F.; de Oliveira Neto, E.D.; Carvalho Leite, L.F.C.; Blanco, F.F.; Lima, P.S. da C.; Souza, H.A., 2024. Chemical soil quality in integrated production systems with presence of native and exotic arboreal components in the eastern Brazilian Amazon. Forests, v. 15 (7), 1078. https://doi.org/10.3390/f15071078.

Souza, J.P; Gonçalves, J.F.C.; Jaquetti, R.K.; Costa, K.C.P.; Lima, R.M.B.; Fearnside, P.M.; Nina Junior, A.R., 2023. Silvicultural interventions and agroforestry systems increase the economic and ecological value of Bertholletia excelsa plantations in the Amazon. Agroforestry Systems, v. 97, 197-207. https://doi.org/10.1007/s10457-022-00798-9.

Statistical Analysis System (SAS), 2023. Analytics Software & Solutions (Accessed November 1, 2023) at:. https://www.sas.com/pt_br/home.html?utm_source = google&utm_medium = cpc&utm_campaign = branb-global&utm_content = GMS 88251&gclid = CjwKCAjwmbqoBhAgEiwACIjzEOhrfkTsrsU0oCZYVFrnb3IxEeLSbqIQYh-HJGSrfmiEctar0oVO-xoC5YAQAvD_BwE.

Vieira, D.S.; Oliveira, M.L.R.; Gama, J.R.V.; Lafetá, B.O., 2022. Perceptions about native chestnut trees in the Lower Tapajós River, state of Pará. Nativa, v. 10 (4), 449-457. https://doi.org/10.31413/nativa.v10i4.14216.

Wadt, L.H.O.; Maroccolo, J.F.; Guedes, M.C.; Silva, K.E. (Eds.), 2023. Amazon nut: studies on the species and its value chain: social, economic and organizational aspects. v. 1. Embrapa, Brasília, DF, 352 p.

Waring, B.; Neumann, M.; Prentice, I.C.; Adams, M.; Smith, P.; Siegert, M., 2020. Forests and decarbonization - roles of natural and planted forests. Frontiers in Forestry and Global Change, v. 3 (8). https://doi.org/10.3389/ffgc.2020.00058.

Wassenberg, M.; Chiu, H.S.; Guo, W.; Spiecker, H., 2015. Analysis of wood density profiles of tree stems: Incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees, v. 29, 551-561. https://doi.org/10.1007/s00468-014-1134-7.

Wheeler, E.A.; Baas, P.; Gasson, P.E., 1989. International Association of Wood Anatomists: list of microscopic features for hardwood identification. IAWA Journal, v. 10 (3), 219-232 (Accessed Outubro 08, 2023) at:. https://www.researchgate.net/publication/294088872_IAWA_List_of_Microcopie_Features_for_Hardwood_Identification.

Zhang, S.Y.; Ren, H.; Jiang, Z., 2021. Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana). Journal of Wood Science, v. 67 (30). https://doi.org/10.1186/s10086-021-01965-9.

Downloads

Published

2025-02-06

How to Cite

Santos, L. E. dos, Dias, C. T. dos S., Araújo , E. J. G. de, Cândido, A. C. T. F., Fernandes, P. C. C., Silva, A. R., Oliveira , A. H. M., Moutinho, V. H. P., & Martorano, L. G. (2025). Wood density of forest species in integrated crop-livestock-forest system in the Brazilian Amazon: challenges and opportunities for Bertholletia excelsa, Dipteryx odorata, and Khaya grandifoliola. Revista Brasileira De Ciências Ambientais, 60, e2370. https://doi.org/10.5327/Z2176-94782370