Innovation in the production of ecological biodispersants: co-cultivation of Serratia marcescens and Tetradesmus obliquus

Authors

DOI:

https://doi.org/10.5327/Z2176-94782342

Keywords:

biosurfactant; co-culture; bacterium; microalgae; petroderivative bioremediation.

Abstract

Mixed fermentations with bacteria and microalgae have been successfully used to increase biomass and metabolites production. However, this strategy has not yet been explored to produce biodispersants—biomolecules with potential for use in the bioremediation of petroderivatives. Therefore, we investigated the production of biosurfactants by co-cultivation of Serratia marcescens and Tetradesmus obliquus and its application as a biodispersant. The biomolecule was isolated by acid precipitation and subjected to preliminary characterization, stability and phytotoxicity tests and application in removing burnt engine oil from mollusk shells. When cultivated alone, S. marcescens presented surface tension of 27.4 mN/m and oil displacement area of 34.54 cm2, and when cultivated with T.obliquus,presented 26.6 mN/m and 50.24 cm2, respectively. Furthermore, excellent results of interfacial tension (1.0 mN/m) and emulsification index (96%) were verified in the mixed culture. The biosurfactant yield was 1.75 g/L, and it presented an anionic and lipopeptide nature, as well as stability at alkaline pH and in a wide range of temperature and salinity. In addition, it proved to be non-toxic against cucumber (Cucumis sativus) and lettuce (Lactuca sativa) seeds and showed 100% efficiency in washing mollusk shells impregnated with burnt engine oil. Thus, the co-cultivation of S. marcescens and T. obliquus represents an innovative and sustainable technology for biodispersant production with a view to application in the bioremediation of environments contaminated with petroleum derivatives.

Downloads

Download data is not yet available.

References

Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Fayaz, F.; Alara, O.R., 2018. Biosurfactants-a new frontier for social and environmental safety: a mini review. Biotechnology Research and Innovation, v. 2 (1), 81-90. https://doi.org/10.1016/j.biori.2018.09.001.

Alara, O.R.; Abdurahman, N.H.; Ali, H.A., 2024. Biosurfactants for sustainability. In: Aslam, R.; Aslam, J.; Hussain, C.M. (Eds.), Industrial Applications of Biosurfactants and Microorganisms. Academic Press, pp. 437-453. https://doi.org/10.1016/B978-0-443-13288-9.00017-6.

Alisi, C.; Musella, R.; Tasso, F.; Ubaldi, C.; Manzo, S.; Cremisini, C.; Sprocati, A.R., 2009. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Science of the Total Environment, v. 407 (8), 3024-3032. https://doi.org/10.1016/j.scitotenv.2009.01.011.

Almansoory, A.F.; Hasan, H.A.; Idris, M.; Abdullah, S.R.S.; Anuar, N., 2017. Biosurfactant production by the hydrocarbon-degrading bacteria (HDB) Serratia marcescens: Optimization using central composite design (CCD). Journal of Industrial and Engineering Chemistry, v. 47, 272-280. https://doi.org/10.1016/j.jiec.2016.11.043.

Almansoory, A.F.; Hasan, H.A.; Abdullah, S.R.S.; Idris, M.; Anuar, N.; Al-Adiwish, W.M., 2019. Biosurfactant produced by the hydrocarbon-degrading bacteria: Characterization, activity, and applications in removing TPH from contaminated soil. Environmental Technology & Innovation, v. 14, 100347. https://doi.org/10.1016/j.eti.2019.100347.

Alves, A.R.; Sequeira, A.M.; Cunha, A., 2019. Increase in bacterial biosurfactant production by co‐cultivation with biofilm‐forming bacteria. Letters in Applied Microbiology, v. 69 (1), 79-86. https://doi.org/10.1111/lam.13169.

Araújo, H.W.C, Andrade, R.F.S.; Montero-Rodríguez, D.; Rubio-Ribeaux, D.; Silva, C.A.A.; Campos-Takaki, G.M., 2019. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories, v. 18(2), 1-13. https://doi.org/10.1186/s12934-018-1046-0.

Atakpa, E.O.; Zhou, H.; Jiang, L.; Zhang, D.; Li, Y.; Zhang, W.; Zhang, C., 2023. Co-culture of Acinetobacter sp. and Scedosporium sp. immobilized beads for optimized biosurfactant production and degradation of crude oil. Environmental Pollution, v. 335, 122365. https://doi.org/10.1016/j.envpol.2023.122365.

Channashettar, V.; Srivastava, S.; Lal, B.; Singh, A.; Rathore, D., 2022. Bioremediation of petroleum hydrocarbons (PHC) using biosurfactants. In: Sayyed, R.Z. (Ed.), Microbial Surfactants. CRC Press, pp. 226-240.

Chen, L.; Xu, K.; Zhang, Y.; Hasi, Q.; Luo, X.; Xu, J.; Li, A., 2021. Selective adsorption and efficient degradation of petroleum hydrocarbons by a hydrophobic/lipophilic biomass porous foam loaded with microbials. ACS Applied Materials & Interfaces, v. 13 (45), 53586-53598. https://doi.org/10.1021/acsami.1c15380.

Chen, W.C.; Kan, K.H.; Wang, L.F.; Wei, Y.H., 2024. Characterization and production of serrawettin, a lipopeptide biosurfactant, from Serratia marcescens SMΔR. Journal of the Taiwan Institute of Chemical Engineers. Advance Online Publication, v. 160, 105232. https://doi.org/10.1016/j.jtice.2023.105232.

Crespo, I.G.; Álvaro A.G.; Palomar, C.R.; Ibrahim, F.G.G.; Torre, R.M., 2023. Algal-bacterial consortiums, from fundamental interactions to environmental applications. In: Encarnação, T.; Pais, A.C. (Eds.), Marine organisms: a solution to environmental pollution? Uses in bioremediation and in biorefinery. Springer International Publishing, Cham, pp. 65-77.

Dusane, D.H.; Matkar, P.; Venugopalan, V.P.; Kumar, A.R.; Zinjarde, S.S., 2011. Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms. Current Microbiology, v. 62, 974-980. https://doi.org/10.1007/s00284-010-9812-1.

Elemba, O.M.; Ijah, U.J.J.; Chibunna, M., 2015. Isolation, characterization, and meor ability of the biosurfactant produced from Serratia marcescens UEO15. Global Journal Advanced Research, v. 2 (6), 962-974. ISSN: 2394-5788.

Elkenawy, N.M.; Gomaa, O.M., 2022. Valorization of frying oil waste for biodetergent production using Serratia marcescens N2 and gamma irradiation assisted biorecovery. Microbial Cell Factories, v. 21 (1), 151. https://doi.org/10.1186/s12934-022-01877-3.

Farahani, M.D.; Zheng, Y., 2022. The formulation, development and application of oil dispersants. Journal of Molecular Liquids, v. 10 (3), 425. https://doi.org/10.3390/jmse10030425.

Hamza, F.; Kumar, A.R.; Zinjarde, S., 2018. Coculture induced improved production of biosurfactants by Staphylococcus lentus SZ2: Role in protecting Artemia salina against Vibrio harveyi. Enzyme and Microbial Technology, v. 114, 33-39. https://doi.org/10.1016/j.enzmictec.2018.03.008.

Huang, H.; Li, Z.; Qing, Y.; Hu, C.; Qin, C., 2024. Amphiphilic hemicellulose based-biosurfactants for the efficient hydrocarbons separation from oily sludge. Journal of Cleaner Production, v. 434, 140106. https://doi.org/10.1016/j.jclepro.2023.140106.

Huang, Y.; Zhou, H.; Zheng, G., 2020. Isolation and characterization of biosurfactant-producing Serratia marcescens ZCF25 from oil sludge and application to bioremediation. Environmental Science and Pollution Research, v. 27, 27762-27772. https://doi.org/10.1007/s11356-020-09006-6.

Karim, A.; Islam, M.A.; Mishra, P.; Muzahid, A.J.M.; Yousuf, A.; Khan, M.M.R.; Faizal, C. K.M., 2023. Yeast and bacteria co-culture-based lipid production through bioremediation of palm oil mill effluent: a statistical optimization. Biomass Conversion and Biorefinery, v. 13, 2947-2958. https://doi.org/10.1007/s13399-021-01275-6.

Kiani, H.; Azimi, Y.; Li, Y.; Mousavi, M.; Cara, F.; Mulcahy, S.; McDonnell, H.; Blanco, A.; Halim, R., 2023. Nitrogen and phosphate removal from dairy processing side-streams by monocultures or consortium of microalgae. Journal Biotechnology, v. 361, 1-11. https://doi.org/10.1016/j.jbiotec.2022.11.011.

Kuyukina, M.S.; Ivshina, I.B.; Philp, J.C.; Christofi, N.; Dunbar, S.A.; Ritchkova, M.I., 2001. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, v. 46, 149-156. https://doi.org/10.1016/S0167-7012(01)00259-7.

Leong, W.H.; Kiatkittipong, K.; Kiatkittipong, W.; Cheng, Y.W.; Lam, M.K.; Shamsuddin, R.; Mohamad, M., 2020. Comparative performances of microalgal-bacterial co-cultivation to bioremediate synthetic and municipal wastewaters whilst producing biodiesel sustainably. Processes, v. 8, 1427. https://doi.org/10.3390/pr8111427

Little, D.I.; Sheppard, S.R.J.; Hulme, D., 2021. A perspective on oil spills: What we should have learned about global warming. Ocean Coast Manag, v. 202, 105509. https://doi.org/10.1016/j.ocecoaman.2020.105509.

Luo, X.; Zhang, H.; Zhang, J., 2021. The influence of a static magnetic field on a Chlorella vulgaris-Bacillus licheniformis consortium and its sewage treatment effect. Journal of Environmental Management, v. 295, 112969. https://doi.org/10.1016/j.jenvman.2021.112969.

Manocha, M.S.; San-Blas, G.; Centeno, S., 1980. Lipid composition of Paracoccidioides brasiliensis: Possible correlation with virulence of different strains. Journal of General Microbiology, v. 117, 147-154. https://doi.org/10.1099/00221287-117-1-147.

Marajan, C.; Alias, S.; Ramasamy, K.; Abdul-Talib, S., 2018. The effect of incubation time, temperature, and pH variations on the surface tension of biosurfactant produced by Bacillus spp. AIP Conference Proceedings, v. 2020 (1), 020047. https://doi.org/10.1063/1.5062673.

Mgbechidinma, C.L.; Zhang, C., 2024. Removal of hydrophobic contaminant/petroleum derivate utilizing biosurfactants. In: Aslam, R.; Aslam, J.; Hussain, C.M. (Eds.), Industrial Applications of Biosurfactants and Microorganisms. Academic Press, pp. 193-216. https://doi.org/10.1016/B978-0-443-13288-9.00019-X.

Montero-Rodríguez, D.; Andrade, R.F.S.; Ribeiro, D.L.R.; Rubio-Ribeaux, D.; Lima, R.A.; Araújo, H.W.C.; Campos-Takaki, G.M., 2015. Bioremediation of petroleum derivatives using biosurfactants produced by Serratia marcescens UCP/WFCC 1549 in low-cost medium. International Journal of Current Microbiology and Applied Sciences, v. 4 (7), 550-562. ISSN: 2319-7706

Nalini, S.; Parthasarathi, R., 2014. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as a biocontrol agent. Bioresource Technology, v. 173, 231-238. http://dx.doi.org/10.1016/j.biortech.2014.09.051.

Pele, M.A.; Ribeaux, D.R.; Vieira, E.R.; Souza, A.F.; Luna, M.A.C.; Montero Rodríguez, D.; Andrade, R.F.S.; Alviano, D.S.; Alviano, C.S.; Barreto-Bergter, E.; Santiago, A.L.C.M.A.; Campos-Takaki, G.M., 2019. Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electronic Journal of Biotechnology, v. 38, 40-48. https://doi.org/10.1016/j.ejbt.2018.12.003.

Pereira, J.F.B.; Gudiña, E.J.; Costa, R.; Vitorino, R.; Teixeira, J.A.; Coutinho, J.A.P.; Rodrigues, L.R., 2013. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel, v. 111, 259-268. https://doi.org/10.1016/j.fuel.2013.04.040.

Pruthi, V.; Cameotra, S.S., 2020. Novel sucrose lipid produced by Serratia marcescens and its application in enhanced oil recovery. Journal of Surfactants and Detergents, v. 3, 533-537. https://doi.org/10.1007/s11743-000-0153-9.

Rajitha, K.; Nancharaiah, Y.V.; Venugopalan, V.P., 2024. Inhibition of biofilm formation and settlement of barnacle larvae by a biosurfactant produced from a marine biofilm-forming Exiguobacterium sp. R58. International Biodeterioration and Biodegradation, v. 187, 105724. https://doi.org/10.1016/j.ibiod.2023.105724.

Roldán-Carrillo, T.; Martínez-García, X.; Zapata-Penasco, I.; Castorena-Cortés, G.; Reyes-Avila, J.; Mayol-Castillo, M.; Olguín-Lora, P., 2011. Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a box-behuken design. Colloids and Surfaces B: Biointerfaces, v. 86, 284-389. https://doi.org/10.1016/j.colsurfb.2011.04.026.

Rosas-Galván, N.S.; Martínez‐Morales, F.; Marquina‐Bahena, S.; Tinoco‐Valencia, R.; Serrano-Carreón, L.; Bertrand, B.; León-Rodríguez, R.; Guzmán-Aparicio, J.; Alvaréz-Berber, L.; Trejo-Hernández, M.R., 2018. Improved production, purification, and characterization of biosurfactants produced by Serratia marcescens SM3 and its isogenic SMRG-5 strain. Biotechnology and Applied Biochemistry, v. 65 (5), 690-700. https://doi.org/10.1002/bab.1652

Roy, A.; Mandal, M.; Das, S.; Popek, R.; Rakwal, R.; Agrawal, G.K.; Awasthi, A.; Sarkar, A., 2024. The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function. Science Total Environment, v. 914, 169763. https://doi.org/10.1016/j.scitotenv.2023.169763.

Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A., 2016. Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, v. 17 (3), 401. https://doi.org/10.3390/ijms17030401

Santos, R.A.; Rodríguez, D.M.; Ferreira, I.N.S.; Almeida, S.M.; Campos-Takaki, G.M.; Lima, M.A.B., 2021. Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environment Technology, v. 43 (19), 2956-2967. https://doi.org/10.1080/09593330.2021.1910733.

Selva Filho, A.A.P.; Converti, A.; Silva, R.C.F.S.; Sarubbo, L.A., 2023. Biosurfactants as multifunctional remediation agents of environmental pollutants generated by the petroleum industry. Energies, v. 16 (3), 1209. https://doi.org/10.3390/en16031209.

Sharma, K.; Shah, G.; Soni, V., 2024. Comprehensive insights into the impact of oil pollution on the environment. Regional Studies in Marine Science, v. 74, 103516. https://doi.org/10.1016/j.rsma.2024.103516.

Silva, N.R.A.; Luna, M.A.C.; Santiago, A.L.; Franco, L.O.; Silva, G.K.B.; Souza, P.M.; Okada, K.; Albuquerque, C.D.C.; Silva, C.A.A.; Campos-Takaki, G.M., 2014. Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from caatinga soil in the northeast of Brazil. International Journal of Molecular Sciences, v. 15 (9), 15377-15395. https://doi.org/10.3390/ijms150915377.

Souza, A.C.; Silva, M.S.; Simões, L.A.; Fernandes, N.A.T.; Schwan, R.F.; Dias, D.R., 2024. Advantages of biosurfactants over petroleum-based surfactants. In: Aslam, R.; Aslam, J.; Hussain, C.M. (Eds.), Industrial Applications of Biosurfactants and Microorganisms. Academic Press, pp. 371-393. https://doi.org/10.1016/B978-0-443-13288-9.00002-4.

Stanier R.Y, Kunisawa R, Mandel M, Cohen-Bazire G., 1971. Purification and properties of unicellular blue-green algae (order: Chrococcales). Bacteriological Reviews, v. 35 (2), 171-205. https://doi.org/10.1128/br.35.2.171-205.1971.

Tiquia, S.M.; Tam, N.F.Y.; Hodgkiss, I.J., 1996. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental Pollution, v. 93 (3), 249-256. https://doi.org/10.1016/S0269-7491(96)00052-8.

Xu, L.; Cheng, X.; Wang, Q., 2018. Enhanced lipid production in Chlamydomonas reinhardtii by co-culturing with Azotobacter chroococcum. Frontiers in Plant Science, v. 9, 741. https://doi.org/10.3389/fpls.2018.00741.

Zehra, S.; Mobin, M.; Aslam, R., 2023. Application of Biosurfactants as Anti-Corrosive Agents. In: Aslam, R.; Mobin, M.; Aslam, J.; Zehra, S. (Eds.), Advancements in Biosurfactants Research. Springer International Publishing, Cham, pp. 171-189.

Zhao, J.; Song, M.; Yin, D.; Li, R.; Yu, J.; Ye, X.; Chen, X., 2024. Sustainable transforming toxic sludge into amino acids via bacteria-algae consortium. Environmental Research, v. 263, 120079. https://doi.org/10.1016/j.envres.2024.120079.

Zhu, L.; Li, S.; Hu, T.; Nugroho, Y.K.; Yin, Z.; Hu, D.; Chu, R.; Mo, F.; Liu, C.; Hiltunen, E., 2019. Effects of nitrogen source heterogeneity on nutrient removal and biodiesel production of mono-and mix-cultured microalgae. Energy Conversion and Management, v. 201, 112144. https://doi.org/10.1016/j.enconman.2019.112144.

Downloads

Published

2025-02-27

How to Cite

Santos, R. A. dos, Rodríguez, D. M., Mendonça, R. de S., Takaki, G. M. de C., Porto, A. L. F., Lima, M. A. B. de, & Bezerra, R. P. (2025). Innovation in the production of ecological biodispersants: co-cultivation of Serratia marcescens and Tetradesmus obliquus. Revista Brasileira De Ciências Ambientais, 60, e2342. https://doi.org/10.5327/Z2176-94782342

More articles by the same author(s)