Phytoremediation of microcystins using Myriophyllum aquaticum can prevent sublethal effects in a Neotropical freshwater catfish
DOI:
https://doi.org/10.5327/Z2176-94782172Keywords:
biomarkers; cyanobacteria; cyanotoxins; ecotoxicology; Rhamdia quelen.Abstract
Microcystins are cyanotoxins that can be produced by cyanobacteria species such as Microcystis aeruginosa. Due to the presence of microcystins in water bodies and aquatic organisms, it needs to be monitored. Furthermore, additional studies are required in the implementation of alternative and sustainable water treatment methods. The aim of this study was to investigate the potential of Myriophyllum aquaticum to prevent the harmful effects induced by M. aeruginosa aqueous extract in Rhamdia. quelen usingbiomarkers and to assess whether the plant can be suitable for phytoremediation in aquatic ecosystems. In the first experiment, R. quelen was exposed to 1 and 10 μg.L–1 of microcystins through an aqueous extract dissolved in the bioassay’s water. Second, tanks containing the same test concentrations of microcystins were treated by phytoremediation using M. aquaticum at 10 g.L–1, for 7 days. After that, treated water was used in a new bioassay with fish exposure. The results showed that phytoremediation decreased the microcystin concentration in water, and different biomarker analyses demonstrated that M. aquaticum treatment prevented DNA damage, hematological alterations, and tissue damage in R. quelen. The phytoremediation with M. aquaticum can be a sustainable and cost-effective alternative to water treatment, highlighting its role in enhancing water quality and supporting biodiversity conservation. These results support the importance of adopting more restrictive legal limits for cyanotoxins in water to protect native aquatic species and promote sustainable water resource management.
Downloads
References
Aebi, H., 1984. Catalase in vitro. Methods Enzymology, v. 105, 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3
Aguilera, A.; Almanza, V.; Haakonsson, S.; Palacio, H.; Benitez Rodas, G.A.; Barros, M. U. G.; Capelo-Neto, J.; Urrutia, R.; Aubriot, L.; Bonilla, S., 2023. Cyanobacterial bloom monitoring and assessment in Latin America. Harmful Algae, v. 125, 1568-9883. https://doi.org/10.1016/j.hal.2023.102429.
Aklakur, M.; Bakli, S.; Deo, A.D.; Singh, D.K.; Pailan, G.H., 2023. Cyanobacteria toxicity in aquaculture system and its impact on fish physiology. Journal of Aquaculture & Marine Biology, v. 12 (1), 28-33. https://doi.org/10.15406/jamb.2023.12.00353.
Akyol, Ç.; Ozbayram, E.G.; Accoroni, S.; Radini, S.; Eusebi, A.L.; Gorbi, S.; Vignaroli, C.; Bacchiocchi, S.; Campacci, D.; Gigli, F.; Farina, G.; Albay, M.; Fatone, F., 2021. Monitoring of cyanobacterial blooms and assessing polymer-enhanced microfiltration and ultrafiltration for microcystin removal in an Italian drinking water treatment plant. Environmental Pollution, v. 286, 117535. https://doi.org/10.1016/J.ENVPOL.2021.117535.
AlKahtane, A.A.; Abushouk, A.I.; Mohammed, E.T.; ALNasser, M.; Alarifi, S.; Ali, D.; Alessia, M.S.; Almeer, R.S.; AlBasher, G.; Alkahtani, S.; Aleya, L.; Abdel-Daim, M.M., 2020. Fucoidan alleviates microcystin-LR-induced hepatic, renal, and cardiac oxidative stress and inflammatory injuries in mice. Environmental Science and Pollution Research, v. 27 (3), 2935-2944. https://doi.org/10.1007/S11356-019-06931-Z.
Assis, H.C.S., 2021. Pharmaceutical pollutants. Aquaculture Toxicology, 107-31. https://doi.org/10.1016/B978-0-12-821337-7.00008-6.
Azqueta, A.; Meier, S.; Priestley, C.; Bjerve Gutzkow, K.; Brunborg, G.; Sallette, J.; Soussaline, F.; Collins, A., 2011. The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis, v. 26 (3), 393-399. https://doi.org/10.1093/mutage/geq105.
Beliaeff, B.; Burgeot, T., 2002. Integrated biomarker response: a useful tool for ecological risk assessment. Environmental Toxicology and Chemistry, v. 21 (6), 1316-1322. https://doi.org/10.1002/etc.5620210629.
Bernet, D.; Schmidt, H.; Meier, W.; Burkhardt-Holm, P.; Wahli, T., 1999. Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, v. 22 (1), 25-34. https://doi.org/10.1046/j.1365-2761.1999.00134.x.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72 (1-2), 248-254. https://doi.org/10.1006/abio.1976.9999.
Calado, S.L.M.; Esterhuizen-Londt, M.; Silva de Assis, H.C.; Pflugmacher, S., 2019. Phytoremediation: green technology for the removal of mixed contaminants of a water supply reservoir. International Journal of Phytoremediation, v. 21 (4), 372-379. https://doi.org/10.1080/15226514.2018.1524843.
Carrasco, K.R.; Tilbury, K.L.; Myers, M.S., 1990. Assessment of the piscine micronuc eus test as an in situ. Canadian Journal of Fisheries and Aquatic Sciences, v. 47 (3), 2123-2136. https://doi.org/10.1139/f90-237.
Cestari, M.M.; Lemos, P.M.M.; Ribeiro, C.A.O.; Costa, J.R.M.A.; Pelletier, E.; Ferraro, M.V.M.; Mantovani, M.S.; Fenocchio, A.S., 2004. Genetic damage induced by trophic doses of lead in the neotropical fish Hoplias malabaricus (Characiformes, Erythrinidae) as revealed by the comet assay and chromosomal aberrations. Genetics and Molecular Biology, v. 27 (2), 270-274. https://doi.org/10.1590/S1415-47572004000200023.
Collier, H.B., 1944. Standardization of blood haemoglobin determinations. Canadian Medical Association Journal, v. 50 (6), 550. PMID: 20323122.
Dahedl, E.K.; Urakawa, H., 2023. Differential effects of hydrogen peroxide and l-lysine treatments on the growth of freshwater Cyanophyta and Chlorophyta. Ecologies, v. 4 (2), 355-370. https://doi.org/10.3390/ecologies4020023.
Dong, J.; Dai, D.; Yang, Y.; Wang, F.; Li, X.; Yuan, J.; Chen, Y.; Gao, Y.; Zhang, M.; Gao, X.; Li, M.; Zhang, J., 2022. Responses of submerged macrophyte Ceratophyllum demersum to the gradient concentrations of microcystin-LR (MC-LR). Environmental Science and Pollution Research, v. 9 (47), 71257-71269. https://doi.org/10.1007/s11356-022-20917-4.
Drabkin, D.L., 1946. Spectrophotometric studies XIV. The crystallographic and optical properties of the hemoglobin of man in comparison with those of other species. Journal of Biological Chemistry, v. 164 (2), 703-723. https://doi.org/10.1016/S0021-9258(17)41272-5.
Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, v. 7 (2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9.
Ferraro, T.N.; Golden, G.T.; Smith, G.G.; Martin, J.F.; Lohoff, F.W.; Gieringer, T.A.; Zamboni, D.; Schwebel, C.L.; Press, D.M.; Kratzer-Zhao, S.H.O.; Berrettini, W.H.; Buono, R.J., 2004. Fine mapping of a seizure susceptibility locus on mouse chromosome 1: nomination of Kcnj10 as a causative gene. Mammalian Genome, v. 15 (4), 239-251. https://doi.org/10.1007/s00335-003-2270-3.
Gao, R.; Yuan, Z.; Zhao, Z.; Gao, X., 1998. Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelectrochemistry and Bioenergetics, v. 45 (1), 41-45. https://doi.org/10.1016/s0302-4598(98)00072-5.
Gorham, P.R.; McLachlan, J.; Hammer, U.T.; Kim, W.K., 1964. Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Bréb. Verhandlungen der Internationalen Vereinigung für Theoretischeund Angewandte Limnologie, v. 15 (2), 796-804. https://doi.org/10.1080/03680770.1962.11895606.
Hafeman, D.G.; Sunde, R.A.; Hoekstra, W.C., 1974. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. Journal of Nutrition, v. 104, 580-587. https://doi.org/10.1093/jn/104.5.580.
Heddle, J.A., 1973. A rapid in vivo test for chromosomal damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 18 (2), 187-90. https://doi.org/10.1016/0027-5107(73)90035-3.
Hine, P.M., 1992. The granulocytes of fish. Fish Shellfish Immunology, v. 2 (2), 79-98. https://doi.org/10.1016/S1050-4648(05)80038-5.
Hinojosa, M.G.; Gutiérrez-Praena, D.; Prieto, A.I.; Guzmán-Guillén, R.; Jos, A.; Cameán, A.M., 2019. Neurotoxicity induced by microcystins and cylindrospermopsin: a review. Science of the Total Environment, v. 668, 547-565. https://doi.org/10.1016/j.scitotenv.2019.02.426.
Ishfaq, P.M.; Mishra, S.; Mishra, A.; Ahmad, Z.; Gayen, S.; Jain, S.K.; Tripathi, S.; Mishra, S.K., 2022. Inonotus obliquus aqueous extract prevents histopathological alterations in liver induced by environmental toxicant microcystin. Current Research in Pharmacology and Drug Discovery, v. 3, 100118. https://doi.org/10.1016/j.crphar.2022.100118.
Jacinavicius, F.R.; Geraldes, V.; Fernandes, K.; Crnkovic, C.M.; Gama, W.A.; Pinto, E., 2023. Toxicological effects of cyanobacterial metabolites on zebrafish larval development. Harmful Algae, v. 125, 102430. https://doi.org/10.1016/J.HAL.2023.102430.
Janssen, E.M.-L.; Jones, M.R.; Pinto, E.; Dörr, F.; Torres, M.A.; Rios Jacinavicius, F.; Mazur-Marzec, H.; Szubert, K.; Konkel, R.; Tartaglione, L.; Dell'Aversano, C.; Miglione, A.; McCarron, P.; Beach, D.G.; Miles, C.O.; Fewer, D.P.; Sivonen, K.; Jokela, J.; Wahlsten, M.; Niedermeyer, T.H.J.; Schanbacher, F.; Leão, P.; Preto, M.; D'Agostino, P.M.; Baunach, M.; Dittmann, E.; Reher, R., 2023. S75 | CyanoMetDB | Comprehensive database of secondary metabolites from cyanobacteria (NORMAN-SLE-S75.0.2.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7922070
Jiang, Z.Y.; Hunt, J.V.; Wolff, S.P., 1992. ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Analytical Biochemistry, v. 202 (2), 384-389. https://doi.org/10.1016/0003-2697(92)90122-N.
Jones, M.R.; Pinto, E.; Torres, M.A.; Dörr, F.; Mazur-Marzec, H.; Szubert, K.; Tartaglione, L.; Dell'Aversano, C.; Miles, C.O.; Beach, D.G.; McCarron, P.; Sivonen, K.; Fewer, D.P.; Jokela, J.; Janssen, E.M.L, 2021. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Research, v. 196, 117017. https://doi.org/10.1016/j.watres.2021.117017.
Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N., 2022. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, v. 8, 100203. https://doi.org/10.1016/j.envadv.2022.100203.
Keen, J.H.; Habig, W.H.; Jakoby, W.B., 1976. Mechanism for the several activities of the glutathiones transferases. Journal of Biological Chemistry, v. 251 (20), 6183-6188. PMID: 977564.
Kitamura, R.S.A.; Soares da Silva, A.R.; Pagioro, T.A.; Rocha Martins, L.R., 2022a. Use of Myriophyllum aquaticum to inhibit microcystis aeruginosa growth and remove microcystin-LR. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 57 (3), 434-41. https://doi.org/10.5327/z2176-94781309.
Kitamura, R.S.A.; Vicentini, M.; Perussolo, M.C.; Lirola, J.R.; Santos, C.F.C.; Brito, J.C.M.; Cestari, M.M.; Prodocimo, M.M.; Gomes, M.P.; Assis, H.C.S., 2022b. Sublethal biochemical, histopathological and genotoxicological effects of short-term exposure to ciprofloxacin in catfish Rhamdia quelen. Environmental Pollution, v. 300, 118935. https://doi.org/10.1016/J.ENVPOL.2022.118935.
Li, B.; Yin, Y.; Kang, L.; Feng, L.; Liu, Y.; Du, Z.; Tian, Y.; Zhang, L., 2021. A review: application of allelochemicals in water ecological restoration — algal inhibition. Chemosphere, v. 267, 128869. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128869.
Li, T.; Fan, X.; Cai, M.; Jiang, Y.; Wang, Y.; He, P.; Ni, J.; Mo, A.; Peng, C.; Liu, J., 2023. Advances in investigating microcystin-induced liver toxicity and underlying mechanisms. Science of The Total Environment, v. 905, 167167. https://doi.org/10.1016/J.SCITOTENV.2023.167167.
Malbrouck, C.; Kestemont, P., 2006. Effects of microcystins on fish. Environmental Toxicology and Chemistry, v. 25 (1), 72-86. https://doi.org/10.1897/05-029R.1.
Martins, N.D.; Yunes, J.S.; Monteiro, D.A.; Rantin, F.T.; Kalinin, A.L., 2017. Microcystin-LR leads to oxidative damage and alterations in antioxidant defense system in liver and gills of Brycon Amazonicus (SPIX & AGASSIZ, 1829). Toxicon, v. 139, 109-16. https://doi.org/10.1016/j.toxicon.2017.10.006.
Mazzoni, T.S.; Bombardelli, R.A.; Quagio-Grassiotto, I., 2020. Reproductive biology of neotropical fishes: a guide to identification to the gonadal morphology during the reproductive cycle of Catfish Rhamdia quelen (Siluriformes: Heptapteridae). Aquatic Science and Technology, v. 8 (2), 15. https://doi.org/10.5296/ast.v8i2.17102.
Mela, M.; Guiloski, I.C.; Doria, H.B.; Randi, M.A.F.; De Oliveira Ribeiro, C.A.; Pereira, L.; Maraschi, A.C.; Prodocimo, V.; Freire, C.A.; Silva de Assis, H.C., 2013. Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen). Ecotoxicology and Environmental Safety, v. 93, 13-21. https://doi.org/10.1016/j.ecoenv.2013.03.026.
Munoz, M.; Cirés, S.; de Pedro, Z.M.; Colina, J.A.; Velásquez-Figueroa, Y.; Carmona-Jiménez, J.; Caro-Borrero, A.; Salazar, A.; Fuster, M.-C.S.M.; Contreras, D.; Perona, E.; Quesada, A.; Casas, J.A., 2021. Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: challenges for risk management and opportunities for removal by advanced technologies. Science of the Total Environment, v. 761, 143197. https://doi.org/10.1016/j.scitotenv.2020.143197.
Oliveira-Júnior, A.A.; Tavares-Dias, M.; Marcon, J.L., 2009. Biochemical and hematological reference ranges for amazon freshwater turtle, Podocnemis expansa (Reptilia: Pelomedusidae), with morphologic assessment of blood cells. Research in Veterinary Science, v. 86 (1), 146-151. https://doi.org/10.1016/j.rvsc.2008.05.015.
Prieto, A.I.; Jos, Á.; Pichardo, S.; Moreno, I.; Cameán, A.M., 2006. differential oxidative stress responses to microcystins LR and RR in intraperitoneally exposed tilapia fish (Oreochromis sp.). Aquatic Toxicology, v. 77 (3), 314-321. https://doi.org/10.1016/J.AQUATOX.2005.12.012.
Ramsdorf, W.A.; Guimarães, F.S.F.; Ferraro, M.V.M.; Gabardo, J.; Trindade, E.S.; Cestari, M.M., 2009. Establishment of experimental conditions for preserving samples of fish blood for analysis with both comet assay and flow cytometry. Mutation Research, v. 673 (1), 78-81. https://doi.org/10.1016/j.mrgentox.2008.11.010.
Rodrigues, N.B.; Pitol, D.L.; Figueiredo, F.A.T.; Lima, A.C.T.C.; Henry, T.B.; Issa, J.P.M.; Umbuzeiro, G.A.; Pereira, B.F., 2022. Microcystin-LR at sublethal concentrations induce rapid morphology of liver and muscle tissues in the fish species Astyanax altiparanae (Lambari). Toxicon, v. 211, 70-78. https://doi.org/10.1016/J.TOXICON.2022.03.006.
Sakuragui, M.M.; Paulino, M.G.; da Silva e Souza, N.E.; Tavares, D.; Terezan, A.P.; Pesenti, E.; Giani, A.; Fernandes, J.B.; Cestari, M.M.; Fernandes, M.N., 2019. crude extract of cyanobacterium Radiocystis fernandoi strain R28 induces anemia and oxidative stress in fish erythrocytes. Toxicon, v. 169, 18-24. https://doi.org/10.1016/j.toxicon.2019.08.002.
Sanchez, W.; Burgeot, T.; Porcher, J.M., 2013. A novel ‘integrated biomarker response’ calculation based on reference deviation concept. Environmental Science and Pollution Research, v. 20 (5), 2721-2725. https://doi.org/10.1007/s11356-012-1359-1.
Schmid, W., 1976. The micronucleus test for cytogenetic analysis. Chemical Mutagens, 31-53. https://doi.org/10.1007/978-1-4684-0892-8_2.
Sedlak, J.; Lindsay, R.H., 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry, v. 25, 192-205. https://doi.org/10.1016/0003-2697(68)90092-4.
Shahmohamadloo, R.S.; Ortiz Almirall, X.; Simmons, D.B.D.; Poirier, D.G.; Bhavsar, S.P.; Sibley, P.K., 2022. Fish tissue accumulation and proteomic response to microcystins is species-dependent. Chemosphere, v. 287, 132028. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132028.
Silva, T.T.; Jacinavicius, F.R.; Pinto, E.; Borrely, S.I., 2023. Intracellular microcystins degradation and acute toxicity decrease towards daphnia similis by low electron-beam irradiation doses. Algal Research, v. 72, 103086. https://doi.org/10.1016/j.algal.2023.103086.
Silva-Stenico, M.E.; Cantúsio Neto, R.; Alves, I.R.; Moraes, L.A.B.; Shishido, T.K.; Fiore, M.F., 2009. Hepatotoxin microcystin-LR extraction optimization. Journal of the Brazilian Chemical Society, v. 20 (3), 535-542. https://doi.org/10.1590/S0103-50532009000300019.
Somdee, T.; Thathong, B.; Somdee, A., 2016. The removal of cyanobacterial hepatotoxin [dha7] microcystin-lr via bioaccumulation in water lettuce (Pistia stratiotes L.). Bulletin of Environmental Contamination and Toxicology, v. 96 (3), 388-394. https://doi.org/10.1007/s00128-015-1715-1.
Tavares-Dias, M.; Moraes, F.R., 2006. Hematological parameters for the Brycon orbignyanus Valenciennes, 1850 (Osteichthyes: Characidae) intensively bred. Hidrbiológica, v. 16 (3), 271-274.
Techer, D.; Fontaine, P.; Personne, A.; Viot, S.; Thomas, M., 2016. Allelopathic potential and ecotoxicity evaluation of gallic and nonanoic acids to prevent cyanobacterial growth in lentic systems: a preliminary mesocosm study. Science of The Total Environment, v. 547, 157-165. https://doi.org/10.1016/J.SCITOTENV.2015.12.164.
van der Oost, R.; Beyer, J.; Nico, P.E. Vermeulen. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, v. 13 (2), 57-149. https://doi.org/10.1016/S1382-6689(02)00126-6.
Wang, S.; Zhang, X.; Wang, C.; Chen, N., 2023. Multivariable integrated risk assessment for cyanobacterial blooms in eutrophic lakes and its spatiotemporal characteristics. Water Research, v. 228, 119367. https://doi.org/10.1016/J.WATRES.2022.119367.
Wang, T.; Liu, H., 2023. Aquatic plant allelochemicals inhibit the growth of microalgae and cyanobacteria in aquatic environments. Environmental Science and Pollution Research, v. 30 (48), 105084-105098. https://doi.org/10.1007/S11356-023-29994-5.
World Health Organization (WHO), 2021. Guidelines for water quality. 4. ed. WHO, Geneva.
Zaidi, H.; Amrani, A.; Sedrati, F.; Maaref, H.; Leghrib, F.; Benamara, M.; Amara, H.; Wang, Z.; Nasri, H., 2021. Histological and chemical damage induced by microcystin-lr and microcystin-RR on land snail helix aspersa tissues after acute exposure. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, v. 245, 109031. https://doi.org/10.1016/j.cbpc.2021.109031.
Zamora-Barrios, C.A.; Nandini, S.; Sarma, S.S.S., 2019. Bioaccumulation of microcystins in seston, zooplankton and fish: a case study in Lake Zumpango, Mexico. Environmental Pollution, v. 249, 267-276. https://doi.org/10.1016/J.ENVPOL.2019.03.029.
Zhan, Q.; Teurlincx, S.; van Herpen, F.; Vasantha Raman, N.; Lürling, M.; Waajen, G.; de Senerpont Domis, L.N., 2022. Towards climate-robust water quality management: testing the efficacy of different eutrophication control measures during a heatwave in an urban canal. Science of The Total Environment, v. 828, 154421. https://doi.org/10.1016/J.SCITOTENV.2022.154421.
Zhang, Y.; Vo Duy, S.; Munoz, G.; Sauvé, S., 2022. Phytotoxic effects of microcystins, anatoxin-a and cylindrospermopsin to aquatic plants: a meta-analysis. Science of the Total Environment, v. 810, 152104. https://doi.org/10.1016/j.scitotenv.2021.152104.
Zhang, Z.; Fan, X.; Peijnenburg, W. J. G. M.; Zhang, M.; Sun, L.; Zhai, Y.; Yu, Q.; Wu, J.; Lu, T.; Qian, H., 2021. Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. Journal of Environmental Sciences (China), v. 99, 1-9. https://doi.org/10.1016/j.jes.2020.06.001.
Zhou, C.; Chen, H.; Zhao, H.; Wang, Q., 2021. Microcystin biosynthesis and toxic effects. Algal Research, v. 55, 102277. https://doi.org/10.1016/J.ALGAL.2021.102277.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.