Potential of two floating aquatic macrophytes in improving water quality: A case study in two tropical streams
DOI:
https://doi.org/10.5327/Z2176-94782158Keywords:
Eichhornia crassipes; nature-based solution; nutrient removal; Pistia stratiotes; sustainable approach.Abstract
The expansion of urbanization has led to significant adverse environmental effects, including the disposal of domestic sewage without treatment in water bodies. This impact contributes to the deterioration of water quality and poses serious risks to human health and the environment. In this context, effective and sustainable methods to mitigate the impacts should be explored, such as the use of plants capable of removing or degrading contaminants from water. The present study aimed to assess the phytoremediation potential of two free-floating aquatic macrophytes (Eichhornia crassipes and Pistia stratiotes) systems for enhancing the water quality collected from two polluted urban streams. The trials were performed in 25-L experimental units for seven days under ambient conditions. The water quality variables after the exposure period were compared to those at the beginning of the experiment to assess the potential improvements due to the presence of macrophytes. The systems with E. crassipes exhibited good performance in water samples from both streams, with reductions reaching 29.2% in dissolved solids, 36.8% in electrical conductivity, 44% in biochemical oxygen demand, 57% in nitrogen, and 45% in phosphorus. The systems with P. stratiotes also exhibited satisfactory outcomes, including 90 and 76.2% reductions in phosphorus levels of Santa Rita Stream and Galinha Stream, respectively, and 54% turbidity, and 38% biochemical oxygen demand in both streams. These findings highlight the potential of the two plant species for phytoremediation of polluted waters, considering their performance on short-term exposure. Therefore, this approach consists of a sustainable alternative by utilizing natural elements for environmental restoration, and the outcomes can contribute to future applications of phytoremediation techniques in developing countries.
Downloads
References
Abubakar, F.B.; Ibrahim, S.; Moruf, R.O., 2023. Phytoremediation of aquaculture wastewater: a review of microalgae bioremediation. Science World Journal, v. 18 (1), 83-89. https://www.ajol.info/index.php/swj/article/download/246335/233038.
Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavaş, İ.; Ünay, A.; Abdel-DAIM, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D., 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability (Switzerland), v. 12 (5), 1927. https://doi.org/10.3390/su12051927.
American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF), 2012. Standard Methods for the Examination of Water and Wastewater, edited by A. D. Eaton; L. S. Clesceri; A. E. Greenberg. 20th ed. APHA; AWWA; WEF, Washington, DC.
Anand, S.; Bharti, S.K.; Kumar, S.; Barman, S.C.; Kumar, N., 2019. Phytoremediation of heavy metals and pesticides present in water using aquatic macrophytes. In: Arora, N.K.; Kumar, N., ed. Phyto and rhizo remediation, microorganisms. Springer Singapore, Singapore, pp. 89-119.
Barletta, M.; Lima, A.R.A.; Costa, M.F., 2019. Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Science of the Total Environment, v. 651 (1), 1199-1218. https://doi.org/10.1016/j.scitotenv.2018.09.276.
Borges, F.O.; Luiz, E.; Espíndola, G., 2005. Gestão de resíduos produção de adobe com biomassa de macrófitas aquáticas: uma alternativa para retirada e encapsulamento de poluentes de lagos e reservatórios. Revista Brasileira de Ciências Ambientais (RBCIAMB), (1), 7-17. Retrieved from https://www.rbciamb.com.br/Publicacoes_RBCIAMB/article/view/491.
Brasil, 2024a. Instituto Nacional de Metereológia (INMET) (Accessed August 15, 2024) at: https://portal.inmet.gov.br/.
Brasil, 2024b. Sistema Nacional de Informações sobre Saneamento (SNIS) (Accessed August 15, 2024) at: https://www.gov.br/cidades/pt-br/acesso-a-informacao/acoes-e-programas/saneamento/snis. (Acessed August 15, 2024).
Brazil, 2005. CONAMA Resolution N. 357, March 17th, 2005. Provides the classification of water bodies and environmental guidelines for their classification.
Ceschin, S.; Crescenzi, M.; Iannelli, M.A., 2020. Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environmental Science and Pollution Research, v. 27, 15806-15814. https://doi.org/10.1007/s11356-020-08045-3.
Chatterjee, S., 2024. Site assessment, suitability, and strategy references for in-situ phytoremediation: a case study of Asansol-Pandabeswar mining region. Environment, Development and Sustainability, v. 50, 100992. https://doi.org/10.1016/j.envdev.2024.100992.
Churko, E.E.; Nhamo, L.; Chitakira, M., 2023. Phytoremediation capacity of water hyacinth (Eichhornia crassipes) as a nature-based solution for contaminants and physicochemical characterization of lake water. Water (Switzerland), v. 15 (14), 2540. https://doi.org/10.3390/w15142540.
EPA, 2013. Aquatic life ambient water quality criteria for ammonia – freshwater 2013. US Environmental Protection Agency (EPA), Washington, DC. https://www.epa.gov/sites/production/files/2015-08/documents/aquatic-life-ambient-water-quality-criteria-for-ammonia-freshwater-2013.pdf.
Farid, M.; Irshad, M.; Fawad, M. Ali, Z.; Eneji, A.E.; Aurangzeb, N.; Mohammad, A.; Ali, B., 2014. Effect of cyclic phytoremediation with different wetland plants on municipal wastewater. International Journal of Phytoremediation, v. 16 (6), 572-581. https://doi.org/10.1080/15226514.2013.798623.
Gusti Wibowo, Y.; Tyaz Nugraha, A.; Rohman, A., 2023. Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environmental Nanotechnology, Monitoring and Management, v. 20, 100781. https://doi.org/10.1016/j.enmm.2023.100781.
Hernández-Vásquez, L.A.; Romo-Gómez, C.; Alvarado-Lassman, A.; Prieto-García, F.; Camacho-López, C.; Acevedo-Sandoval, O.A., 2024. Artificial floating islands for the removal of nutrients and improvement of the quality of urban wastewater. Water (Basel), v. 16 (10), 1443. https://doi.org/10.3390/w16101443.
Instituto Brasileiro de Geografia e Estatística (IBGE), 2021. Base cartográfica contínua do município de Araxá. Escala 1:250.000. IBGE, Rio de Janeiro. Retrieved 2024-10-10, from https://www.ibge.gov.br
Johnston, C.A., 1993. Mechanisms of wetland-water quality interaction. In: Moshiri, G.A., ed., Constructed Wetlands for Water Quality Improvement. Taylor and Francis, London, 7 pp. https://doi.org/10.1201/9781003069997
Lamichhane, P.; Veerana, M.; Lim, J.S.; Mumtaz, S.; Shrestha, B.; Kaushik, N.K.; Park, G.; Choi, E.H., 2021. Low-temperature plasma-assisted nitrogen fixation for corn plant growth and development. International Journal of Molecular Sciences, v. 22 (10), 5360. https://doi.org/10.3390/ijms22105360.
Lima, D.V.N.; Filho, C.M.; Pacheco, A.B.; Oliveira e Azevedo, S., 2022. Seasonal variation in the phytoremediation by Pontederia crassipes (Mart) Solms (water hyacinth) and its associated microbiota. Ecological Engineering, v. 183, 106744. https://doi.org/10.1016/j.ecoleng.2022.106744.
Liu, X.; Beusen, A.H.W.; van Puijenbroek, P.J.T.M.; Zhang, X.; Wang, J.; van Hoek, W.J.; Bouwman, A.F., 2024. Exploring wastewater nitrogen and phosphorus flows in urban and rural areas in China for the period 1970 to 2015. Science of the Total Environment, v. 907. https://doi.org/10.1016/j.scitotenv.2023.168091.
Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X., 2010. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, v. 17, 84-96. https://doi.org/10.1007/s11356-008-0094-0.
Magdziak, Z.; Gąsecka, M.; Goliński, P.; Mleczek, M., 2015. Phytoremediation and environmental factors. In: Ansari, A.A.; Gill, S.S.; Gill, R.; Lanza, G.R.; Newman, L., ed. Phytoremediation: Management of Environmental Contaminants. v. 1. Springer International Publishing, New York, pp. 45-56. https://link.springer.com/book/10.1007/978-3-319-10395-2
Martínez-Dalmau. J.; Berbel. J.; Ordóñez-Fernández, R., 2021. Nitrogen fertilization: a review of the risks associated with the inefficiency of its use and policy responses. Sustainability (Switzerland), v. 13 (10), 5625. https://doi.org/10.3390/su13105625.
Mayo, A.W.; Hanai, E.E., 2017. Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes). Physics and Chemistry of the Earth, v. 100, 170-180. https://doi.org/10.1016/j.pce.2016.10.016.
Md Sa’at, S.K.; Qamaruz Zamana, N., 2017. Phytoremediation potential of palm oil mill effluent by constructed wetland treatment. Engineering Heritage Journal, v. 1 (1), 49-50. https://doi.org/10.26480/gwk.01.2017.49.54.
Munawar, M.A.; Khoja, A.H.; Naqvi, S.R.; Mehran, M.T.; Hassan, M.; Liaquat, R.; Dawood, U.F., 2021. Challenges and opportunities in biomass ash management and its utilization in novel applications. Renewable and Sustainable Energy Reviews, v. 150, 111451. https://doi.org/10.1016/j.rser.2021.111451.
Mustafa, H.M.; Hayder, G., 2021. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: a review article. Ain Shams Engineering Journal, v. 12 (1), 355-365. https://doi.org/10.1016/j.asej.2020.05.009.
Ogura, A.P.; Pinto, T.J.S.; Silva, L.C.M.; Sella, C.F.; Ferreira, F.B.C.; Carvalho, P.S.; Menezes-Oliveira, V.B.; Montagner, C.C.; Osório, A.L.; Espíndola, E.L.G., 2022. Environmental analysis of the eutrophication and spread of aquatic macrophytes in a tropical reservoir: a case study in Brazil. Environmental Science and Pollution Research, v. 29, 89426-89437. https://doi.org/10.1007/s11356-022-22070-4.
Palma-Silva, C.; Albertoni, C.; Trindade, E.F.; Furlaneto, L.M.; Acosta, M.C. 2012. Use of Eichhornia crassipes (Mart.) solms for phytoremediation of shallow subtropical lakes. Perspectiva, v. 36 (133), 73-81. https://www.uricer.edu.br/site/pdfs/perspectiva/133_252.pdf
Pang, Y.L.; Quek, Y.Y.; Lim, S.; Shuit, S.H., 2023. Review on phytoremediation potential of floating aquatic plants for heavy metals: a promising approach. Sustainability, v. 15 (2), 1290. https://doi.org/10.3390/su15021290.
Panneerselvam, B.; Priya, K.S., 2023. Phytoremediation potential of water hyacinth in heavy metal removal in chromium and lead contaminated water. International Journal of Environmental Analytical Chemistry, v. 103 (13), 3081-3096. https://doi.org/10.1080/03067319.2021.1901896.
Pinto Lamego, F.; Antonio Vidal, R., 2007. Fitorremediação: plantas como agentes de despoluição? Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, v. 17, 9-18. https://doi.org/10.5380/pes.v17i0.10662.
Qayoom, I.; Jaies, I., 2023. Phytoremediation potential of macrophytes against heavy metals, nitrates and phosphates: a review. Environmental Conservation, v. 24 (1), 273-280. https://doi.org/10.36953/ecj.12102318.
Said, N.S.M.; Abdullah, S.R.S.; Ismail, N.; Hasan, H.A.; Othman, A.R., 2020. Phytoremediation of real coffee industry effluent through a continuous two-stage constructed wetland system. Environmental Technology and Innovation, v. 17, 100502. https://doi.org/10.1016/j.eti.2019.100502.
Sekar, A.; Siraj Ansari, M.M., 2018. Phyto-remediation of total dissolved solids (TDS) by Eichhornia crassipes, Pistia Stratiotes and Chrysopogon Zizanioides from second stage RO-Brine solution. Research Journal of Chemistry and Environment, v. 22 (5).
Sgroi, M.; Pelissari, C.; Roccaro, P.; Sezerino, P.H.; García, J.; Vagliasindi, F.G.A.; Ávila, C., 2018. Removal of organic carbon, nitrogen, emerging contaminants and fluorescing organic matter in different constructed wetland configurations. Chemical Engineering Journal, v. 332, 619-627. https://doi.org/10.1016/j.cej.2017.09.122.
Shafi, J.; Waheed, K.N.; Mirza, Z.S.; Chatta, A.M.; Khatoon, Z.; Rasheed, T.; Salim, S. et al, 2024. Green solution for domestic wastewater treatment: comparing phytoremediation potential of four macrophytes. Water, Air, and Soil Pollution, v. 235 article 49. https://doi.org/10.1007/s11270-023-06838-z.
Sharma, J.K.; Kumar, N.; Singh, N.P.; Santal, A.R, 2023. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: an approach for a sustainable environment. Frontiers in Plant Science, v. 14. https://doi.org/10.3389/fpls.2023.1076876.
Sidana, A.; Yadav, S.K., 2022. Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. Journal of Cleaner Production, v. 335, 130286. https://doi.org/10.1016/j.jclepro.2021.130286.
Souza Junior, P., 2008. A ocupação urbana do município de Araxá do século XVII ao início do século XXI. Monography, Specialization Course in Environmental Management of the Lato Sensu Postgraduate Program of the Federal Center for Technological Education (CEFET-MG), Araxá, MG. Retrieved 2024-08-15, from http://ipdsa.org.br/dados/link/137/arquivo/Monografia%20-PSJ.pdf.
Wickramasinghe, S.; Jayawardana, C.K., 2018. Potential of aquatic macrophytes Eichhornia crassipes, Pistia stratiotes and Salvinia molesta in phytoremediation of textile wastewater. Journal of Water Security, v. 4, 1-8. https://doi.org/10.15544/jws.2018.001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.