Bacuri and macaxeira waste: physical-chemical characterization and production of coconut bioaroma by solid-state fermentation

Authors

DOI:

https://doi.org/10.5327/Z2176-94782118

Keywords:

agro-industrial waste; 6-pentyl-α-pyrone; solid-state fermentation; Platonia insignis Mart; sweet cassava.

Abstract

Agro-industrial waste is considered a global concern. Many of these residues are composed of considerable amounts of lipids and starch that can potentially be applied in bioprocesses, as is the case with residues from the bacuri fruit (Platonia insignis Mart.) and sweet cassava (Manihot esculenta Crantz), practically unexploited in the bioproduction of aromas. This work aimed to characterize these residues and evaluate the bioproduction of coconut aroma 6-pentyl-α-pyrone from solid-state fermentation using the fungi Trichoderma harzianum. The waste underwent characterization. Fermentations were conducted under different humidification conditions (water, nutrient solution without additives, and nutrient solutions with glucose or sucrose) for nine days. Aromatic compounds were extracted by solid-phase microextraction and subsequently quantified by gas chromatography. Analyses with bacuri residue revealed the presence of some compounds with nutritional potential for the fungus. Still, the inhibition halo detected for Trichodermaproved others, such as resinous derivatives that were probably responsible for the lack of growth and bioproduction. In sweet cassava, the compounds detected were not growth inhibitors and had low aroma production, not exceeding 7 ppm (weight/weight). Strategically, these residues were mixed and, in the presence of a nutrient solution with sucrose, a maximum production of 202.46±1.30 ppm (w/w) of 6-pentyl-α-pyrone was achieved, proving an excellent alternative. Cassava probably served as an environment for easy germination of fungal spores and bacuri, as an important source for bioexploitation of nutrients, especially lipids, resulting in increased production of 6-pentyl-α-pyrone.

 

Downloads

Download data is not yet available.

References

Abrol, V.; Kushwaha, M.; Mallubhotla, S.; Jaglan, S., 2022. Chemical mutagenesis and high throughput media optimization in Tolypocladium inflatum MTCC-3538 leads to enhanced production of cyclosporine A. 3 Biotech, v. 12, (8), 158. https://doi.org/10.1007/s13205-022-03219-x

Afiqah Razali, S.; Rasit, N.; Kuan Ooi, C., 2021. Statistical analysis of xylanase production from solid state fermentation of rice husk associated fungus Aspergillus niger. Materials Today: Proceedings, v. 39, 1082-1087. https://doi.org/10.1016/j.matpr.2020.06.366

Alrefai, A.M.; Alrefai, R.; Benyounis, K.Y.; Stokes, J., 2020. Impact of starch from cassava peel on biogas produced through the anaerobic digestion process. Energies, v. 13, (11), 2713. https://doi.org/10.3390/en13112713

Baiyee, B.; Ito, S.; Sunpapao, A., 2019. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology, v. 106, 96-101. https://doi.org/10.1016/j.pmpp.2018.12.009

Bonnarme, P.; Djian, A.; Latrasse, A.; Féron, G.; Giniès, C.; Durand, A.; Le Queré, J.L., 1997. Production of 6-pentyl-α-pyrone by Trichoderma sp. from vegetable oils. Journal of Biotechnology, v. 56, (2), 143-150. https://doi.org/10.1016/S0168-1656(97)00108-9

Budenkova, E.; Sukhikh, S.; Ivanova, S.; Babich, O.; Dolganyuk, V.; Michaud, P.; Kriger, O., 2021. Improvement of enzymatic saccharification of cellulose-containing raw materials using Aspergillus niger. Processes, v. 9, (8), 1360. https://doi.org/10.3390/pr9081360

Buffi, M.; Cailleau, G.; Kuhn, T.; Li Richter, X.-Y.; Stanley, C.E.; Wick, L.Y.; Chain, P.S.; Bindschedler, S.; Junier, P., 2023. Fungal drops: a novel approach for macro- and microscopic analyses of fungal mycelial growth. MicroLife, v. 4. https://doi.org/10.1093/femsml/uqad042

Carvalho, J.C.; Borghetti, I.A.; Cartas, L.C.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R., 2018. Biorefinery integration of microalgae production into cassava processing industry: Potential and perspectives. Bioresource Technology, v. 247, 1165-1172. https://doi.org/10.1016/j.biortech.2017.09.213

Chung, K.H.; Kim, J.W., 2018. Role of sugars in early stage of spore germination in filamentous fungi, Aspergillus nidulans. Korean Journal of Mycology, v. 46, (4), 511-518. https://doi.org/10.4489/KJM.20180056

Clinical and Laboratory Standard Institute, 2014. M39-A4: analysis and presentation of cumulative antimicrobial susceptibility test data: approved guideline. Wayne, PA, USA. ISBN: 610.688.0700.

Conde-Ávila, V.; Loera-Corral, O.; Díaz, R.; Sánchez, C., 2023. Cutinolytic esterases are induced by the growth of the fungus Trichoderma harzianum on glyceryl monostearate in solid-state fermentation. BioResources, v. 18, (4), 8515-8527. https://doi.org/10.15376/biores.18.4.8515-8527

Companhia Nacional de Abastecimento (Conab), 2021. Informações Agropecuárias. Análises do Mercado Agropecuário e Extrativista. Análises do Mercado. Histórico Mensal de Mandioca. Mandioca – Análise Mensal. Novembro 2021 (Accessed April 04, 2023) at:. https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-mandioca/item/17525-mandioca-analise-mensal-novembro-2021

Da Silva, A.F.; da Rocha, C.Q.; da Silva, L.C.N.; Carvalho Júnior, A.R.; Mendes, I.N.F.V.; de Araruna, A.B.; Motta, E.P.; Silva, R.S.; Campos, C.D.L.; Farias, J.R.; Oliveira, A.S.; Silva, D.H.S.; Nascimento, F.R.F.; Guerra, R.N.M.; Monteiro, C.A., 2020. Antifungal and antivirulence activities of hydroalcoholic extract and fractions of Platonia insignis leaves against vaginal isolates of Candida species. Pathogens, v. 9, (2), 84. https://doi.org/10.3390/pathogens9020084

Dulf, F.V.; Vodnar, D.C.; Socaciu, C., 2016. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities, and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chemistry, v. 209, 27-36. https://doi.org/10.1016/j.foodchem.2016.04.016

El‐Sayed, E.R.; Ahmed, A.S.; Al‐Hagar, O.E.A., 2020a. Agro‐industrial wastes for production of paclitaxel by irradiated Aspergillus fumigatus under solid‐state fermentation. Journal of Applied Microbiology, v. 128, (5), 1427-1439. https://doi.org/10.1111/jam.14574

El‐Sayed, E.R.; Ahmed, A.S.; Al‐Hagar, O.E.A., 2020b. Agro‐industrial wastes for production of paclitaxel by irradiated Aspergillus fumigatus under solid‐state fermentation. Journal of Applied Microbiology, v. 128, (5), 1427-1439. https://doi.org/10.1111/jam.14574

Fadel, H.H.M.; Mahmoud, M.G.; Asker, M.M.S.; Lotfy, S.N., 2015. Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse. Electronic Journal of Biotechnology, v. 18, (1), 5-9. https://doi.org/10.1016/j.ejbt.2014.10.006

Flores, C.; Nieto, M.; Millán-Gómez, D.V.; Caro, M.; Galindo, E.; Serrano-Carreón, L., 2019. Elicitation and biotransformation of 6-pentyl-α-pyrone in Trichoderma atroviride cultures. Process Biochemistry, v. 82, 68-74. https://doi.org/10.1016/j.procbio.2019.04.019

Garbin, A.P.; Garcia Nayara F.L.; Cavalheiro, G.F.; Silvestre, M.A.; Rodrigues, A.; Paz, M.F.; Fonseca, G.G.; Leite, R.S.R., 2021. β-glucosidase from thermophilic fungus Thermoascus crustaceus: production and industrial potential. Anais da Academia Brasileira de Ciências, v. 93, (1), e20191349. https://doi.org/10.1590/0001-3765202120191349

Hamad, H.O.; Alma, M.H.; Ismael, H.M.; Goceri, A., 2014. the effect of some sugars on the growth of Aspergillus niger. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, v. 17, (4). https://doi.org/10.18016/KSUJNS.28479

Hamrouni, R.; Molinet, J.; Dupuy, N.; Taieb, N.; Carboue, Q.; Masmoudi, A.; Roussos, S., 2020. The effect of aeration for 6-pentyl-alpha-pyrone, conidia and lytic enzymes production by Trichoderma asperellum strains grown in solid-state fermentation. Waste and Biomass Valorization, v. 11, (11), 5711-5720. https://doi.org/10.1007/s12649-019-00809-4

Hamrouni, R.; Molinet, J.; Miché, L.; Carboué, Q.; Dupuy, N.; Masmoudi, A.; Roussos, S., 2019. Production of coconut aroma in solid-state cultivation: Screening and identification of Trichoderma strains for 6-pentyl-alpha-pyrone and conidia production. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/8562384

Instituto Adolfo Lutz (IAL), 2005. Physical-chemical methods for food analysis. IAL, São Paulo.

Kaur, H.; Garg, N., 2018. Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants. Journal of Plant Growth Regulation, v. 37, (2), 680-693. https://doi.org/10.1007/s00344-017-9750-2

Ladeira, N.; Peixoto, V.; Penha, M.; Barros, E.L.S., 2010. Optimization of 6-pentyl-alpha-pyrne production by solid state fermentation using sugarcane bagasse as residue. BioResources, v. 5, (4), 2297-2306. https://doi.org/10.15376/biores.5.4.2297-2306

Langyan, S.; Bhardwaj, R.; Radhamani, J.; Yadav, R.; Gautam, R.K.; Kalia, S.; Kumar, A., 2022. A quick analysis method for protein quantification in oilseed crops: a comparison with standard protocol. Frontiers in Nutrition, v. 9. https://doi.org/10.3389/fnut.2022.892695

Lim, J.S.; Hong, J.-H.; Lee, D.Y.; Li, X.; Lee, D.E.; Choi, J.U.; Lee, K.Y.; Kim, K.H.; Cho, Y.-C., 2023. 6-Pentyl-α-Pyrone from Trichoderma gamsii Exert Antioxidant and Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated Mouse Macrophages. Antioxidants, v. 12, (12), 2028. https://doi.org/10.3390/antiox12122028

Lima, S.K.R.; Coêlho, A.G.; Lucarini, M.; Durazzo, A.; Arcanjo, D.D.R., 2022. The Platonia insignis Mart. as the promising Brazilian ‘Amazon Gold’: the state-of-the-art and prospects. Agriculture, v. 12, (11), 1827. https://doi.org/10.3390/agriculture12111827

Lindsay, M.A.; Granucci, N.; Greenwood, D.R.; Villas-Boas, S.G., 2022. Identification of new natural sources of flavour and aroma metabolites from solid-state fermentation of agro-industrial by-products. Metabolites, v. 12, (2), 157. https://doi.org/10.3390/metabo12020157

Liu, Y.; He, P.; He, P.; Munir, S.; Ahmed, A.; Wu, Y.; Yang, Y.; Lu, J.; Wang, J.; Yang, J.; Pan, X.; Tian, Y.; He, Y., 2022. Potential biocontrol efficiency of Trichoderma species against oomycete pathogens. Frontiers in Microbiology, v. 13, 974024. https://doi.org/10.3389/fmicb.2022.974024

Madzingira, O.; Hepute, V.; Mwenda, E.N.; Kandiwa, E.; Mushonga, B.; Mupangwa, J.F., 2021. Nutritional assessment of three baled rice straw varieties intended for use as ruminant feed in Namibia. Cogent Food & Agriculture, v. 7, (1). https://doi.org/10.1080/23311932.2021.1950402

Mattedi, A.; Sabbi, E.; Farda, B.; Djebaili, R.; Mitra, D.; Ercole, C.; Cacchio, P.; Del Gallo, M.; Pellegrini, M., 2023. Solid-state fermentation: applications and future perspectives for biostimulant and biopesticides production. Microorganisms, v. 11, (6), 1408. https://doi.org/10.3390/microorganisms11061408

Mendoza G.R.A.; Martijn ten Hoopen, G.; Kass, D.C.J.; Sánchez, G.V.A.; Krauss, U., 2003. Evaluation of mycoparasites as biocontrol agents of Rosellinia root rot in cocoa. Biological Control, v. 27, (2), 210-227. https://doi.org/10.1016/S1049-9644(03)00014-8

Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, v. 31, (3), 426-428. https://doi.org/10.1021/ac60147a030

Missbach, K.; Flatschacher, D.; Bueschl, C.; Samson, J. M.; Leibetseder, S.; Marchetti-Deschmann, M.; Zeilinger, S.; Schuhmacher, R., 2023. Light-induced changes in secondary metabolite production of Trichoderma atroviride. Journal of Fungi, v. 9, (8), 785. https://doi.org/10.3390/jof9080785

Moreno-Ruiz, D.; Lichius, A.; Turrà, D.; Di Pietro, A.; Zeilinger, S., 2020. Chemotropism assays for plant symbiosis and mycoparasitism related compound screening in Trichoderma atroviride. Frontiers in Microbiology, v. 11, 601251. https://doi.org/10.3389/fmicb.2020.601251

Morgan, N.C.M., 2016. Cassava: nutrient composition and nutritive value in poultry diets. Animation Nourish, v. 2, 253-261. https://doi.org/10.1016/j.aninu.2016.08.010

Naeimi, S.; Khosravi, V.; Varga, A.; Vágvölgyi, C.; Kredics, L., 2020. Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease. Agronomy, v. 10, (9), 1258. https://doi.org/10.3390/agronomy10091258

Nopharatana, M.; Howes. T.; Mitchell. D., 1998. Modelling fungal growth on surfaces. Biotechnology Techniques, v. 12, 313-318. https://doi.org/10.1023/A:1008810500243

Ooijkaas, L.P.; Ifoeng, C.J.; Tramper, J.; Buitelaar, R.M., 1998. Spore production of Coniothyrium minitans during solid-state fermentation on different nitrogen sources with glucose or starch as carbon source. Biotechnology Letters, v. 20, (8), 785-788. https://doi.org/10.1023/B:BILE.0000015923.64200.15

Penha, M.P.; Rocha-Leão, M.; Leite. S.G.F., 2012. Sugarcane bagasse as support for the production of coconut aroma by solid state fermentation (SSF). BioResources, v. 7, (2), 2366-2375.

Ramo, L.B.; Nobrega, R.O.; Fernandes, D.D.S.; Lyra, W.S.; Diniz, P.H.G.D.; Araujo, M.C.U., 2024. Determination of moisture and total protein and phosphorus contents in powdered chicken egg samples using digital images, NIR spectra, data fusion, and multivariate calibration. Journal of Food Composition and Analysis, v. 127, 105940. https://doi.org/10.1016/j.jfca.2023.105940

Ramos, A.S.; Fiaux, S.B.; Leite, S.G.F., 2008. Production of 6-pentyl-α-pyrone by Trichoderma harzianum in solid-state fermentation. Brazilian Journal of Microbiology, v. 39, (4), 712-717. https://doi.org/10.1590/S1517-83822008000400022

Ribeiro, D.; Russo, H.; Fraige, K.; Zeraik, M.; Nogueira, C.; da Silva, P.; Codo, A.; Calixto, G.; de Medeiros, A.; Chorilli, M.; Bolzani, V., 2021. Bioactive bioflavonoids from Platonia insignis (Bacuri) residues as added value compounds. Journal of the Brazilian Chemical Society, v. 32, (4), 786-799. https://doi.org/10.21577/0103-5053.20200230

Silva, L.; Freitas, K.; Rocha, J.; Cunha, E., 2016. Study of bacuri bark (Platonia insignis mart.) as a source of a new sustainable agglomerated material. In: Brazilian Chemistry Congress. Chemistry: Technology, Challenges and Perspectives in the Amazon, 56., 2016, Belém, PA (Accessed November 04, 2023) at:. https://www.abq.org.br/cbq/2016/trabalhos/12/9810-23132.html

Toledo, H.; Sánchez, C. I.; Marín, L.; Amich, J.; Calera, J.A., 2022. Regulation of zinc homeostatic genes by environmental pH in the filamentous fungus Aspergillus fumigatus. Environmental Microbiology, v. 24, (2), 643-666. https://doi.org/10.1111/1462-2920.15452

van Soest, P.J., 1994. Nutritional ecology of the ruminant. 2 nd ed. v. 476. Cornell University Press, Ithaca. 476 p. https://doi.org/10.4236/ojapps.2015.510061

Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E., 2021. Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms, v. 9, (10), 2041. https://doi.org/10.3390/microorganisms9102041

Ventura, M.; Puyol, D.; Melero, J.A., 2022. The synergy of catalysis and biotechnology as a tool to modulate the composition of biopolymers (polyhydroxyalkanoates) with lignocellulosic wastes. Catalysis Today, v. 397-399, 220-231. https://doi.org/10.1016/j.cattod.2021.09.032

Wang, B.-T.; Hu, S.; Yu, X.-Y.; Jin, L.; Zhu, Y.-J.; Jin, F.-J., 2020. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers, v. 12, (3), 530. https://doi.org/10.3390/polym12030530

Wiewióra, B.; Żurek, G., 2021. the response of the associations of grass and Epichloë endophytes to the increased content of heavy metals in the soil. Plants, v. 10, (3), 429. https://doi.org/10.3390/plants10030429

Xia, Y.; Lin, X., 2022. Efficient biodegradation of straw and persistent organic pollutants by a novel strategy using recombinant Trichoderma reesei. BioResources and Bioprocessing, v. 9, (1), 91. https://doi.org/10.1186/s40643-022-00581-9

Yamaguchi, K.K.L.; Dias, D.S.; Lamarão, C.V.; Castelo, K.F.A.; Lima, M.S.; Antonio, A.S.; Converti, A.; Lima, E.S.; Veiga-Junior, V.F., 2021. Amazonian Bacuri (Platonia insignis Mart.) fruit waste valorisation using response surface methodology. Biomolecules, v. 11, (12), 1767. https://doi.org/10.3390/biom11121767

Zaier, H.; Maktouf, S.; Roussos, S.; Rhouma, A., 2021. Filamentous fungi isolated from Tunisian olive mill wastes: use of solid-state fermentation for enzyme production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, v. 49, (1), 12125. https://doi.org/10.15835/nbha49112125

Zhao, B.; Al Rasheed, H.; Ali, I.; Hu, S., 2021. Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. Bioresource Technology, v. 319, 124115. https://doi.org/10.1016/j.biortech.2020.124115

Downloads

Published

2024-07-26

How to Cite

Nascimento, A. S. do, Leite, S. G. F., Nascimento, U. M., Muchave, G. J., Silva, A. Z., Chaves, E. R., Penha, M. S. C., Ribeiro, J. B., & Borges, C. P. (2024). Bacuri and macaxeira waste: physical-chemical characterization and production of coconut bioaroma by solid-state fermentation. Revista Brasileira De Ciências Ambientais, 59, e2118. https://doi.org/10.5327/Z2176-94782118

Issue

Section

Especial Section: Bioprocesses and Sustainability