Analysis of water quality, bioindicators, contaminants and their cytogenetic impacts in a Cerrado reservoir

Authors

DOI:

https://doi.org/10.5327/Z2176-94782115

Keywords:

Allium cepa; water; sediment; aquatic macrophytes; reservoir.

Abstract

The fragmentation of Brazilian rivers due to the construction of hydroelectric dams has altered aquatic ecosystems, resulting in the accumulation of residues in sediments. This study evaluated the cytotoxicity and genotoxicity of water and sediments from the Cana Brava reservoir, located in the Tocantins-Araguaia basin in the Cerrado biome, using the Allium cepa test. Sampling points were situated in the Cana Brava reservoir near two tributaries, the Bonito River and the Varjão Stream, areas susceptible to contaminant input due to proximity to urban areas. Physicochemical parameters, metals through atomic absorption spectrometry, toxicity, and analyses of bioindicators such as microalgae and macrophytes were assessed. Near the Varjão Stream, algal richness was higher, with the presence of Chara rusbyana, which indicates good water quality. Near the Bonito River, pollution-indicating microalgae such as Euglena sp., Nitzschia sp., and Oscillatoria sp. were identified, along with a prevalence of Salvinia auriculata, favored by nutrient availability. Cytogenetic tests revealed that sediments, especially from the site near the Varjão Stream, caused chromosomal abnormalities and cytogenotoxic effects, with an increase observed after 72 hours. Principal components analysis showed that phosphorus and potassium in the sediment from the site near the Bonito River correlated with cellular alterations at 48 hours, while sediments near the Varjão Stream resulted in a higher frequency of cytogenetic alterations at 72 hours. These results highlight local impacts on water quality and biological diversity, recommending continuous monitoring to mitigate the adverse effects of pollution in the Cana Brava reservoir.

Downloads

Download data is not yet available.

References

Akhtar, N.; Fiaz Khan, M.; Tabassum, S.; Zahran, E., 2021. Adverse effects of atrazine on blood parameters, biochemical profile and genotoxicity of snow trout (Schizothorax plagiostomus). Saudi Journal of Biological Sciences, v. 28 (3), 1999-2003. https://doi.org/10.1016/j.sjbs.2021.01.001.

Ansari, A.A.; Gill, S.S.; Khan, F.A., 2010. Eutrophication: threat to aquatic ecosystems. In: Ansari, A., Singh Gill, S., Lanza, G., Rast, W. (Eds.), Eutrophication: causes, consequences and control. Springer Netherlands, Dordrecht, pp. 143-170. https://doi.org/10.1007/978-90-481-9625-8_7.

Bagatini, M.D.; Silva, A.C.F., Tedesco, S.B., 2007. The use of Allium cepa test as a bioindicator of genotoxicity of medicinal plants infusions. Revista Brasileira de Farmacognosia, v. 17 (3), 444-447. https://doi.org/10.1590/S0102-695X2007000300019.

Bertanza, G.; Abbà, A.; Alias, C.; Amatucci, A.; Binelli, A.; Castiglioni, S.; Fossati, M.; Cruzeiro, C.; Torre, C. Della, Domini, M.; Feretti, D.; Gilioli, G.; Magni, S.; Mazzoleni, G.; Menghini, M.; Pedrazzani, R.; Schroeder, P.; Simonetto, A.; Steimberg, N.; Ventura, V.; Vezzoli, S.; Zerbini, I., 2024. To spread or not to spread? Assessing the suitability of sewage sludge and other biogenic wastes for agriculture reuse. MethodsX, v. 12, 102599. https://doi.org/10.1016/j.mex.2024.102599.

Bicudo, D.C., 1990. Considerações sobre metodologias de contagem de algas do perifíton. Acta Limnologica Brasiliensia, v. 3 (1), 459-475.

Botelho, R.G.; Christofoletti, C.A.; Correia, J.E.; Ansoar, Y.; Olinda, R.A.; Tornisielo, V.L., 2015. Genotoxic responses of juvenile tilapia (Oreochromis niloticus) exposed to florfenicol and oxytetracycline. Chemosphere, v. 132, 206-212. https://doi.org/10.1016/j.chemosphere.2015.02.053.

Bueno, N.C.; Bicudo, C.E.M., 2021. Charophyceae do Brasil. Rima, São Carlos.

Canlı, O.; Çetintürk, K.; Güzel, B., 2023. A comprehensive assessment, source input determination and distribution of persistent organic pollutants (POPs) along with heavy metals (HMs) in reservoir lake sediments from Çanakkale province, Türkiye. Environmental Geochemistry and Health, v. 45, 3985-4006. https://doi.org/10.1007/s10653-023-01480-4.

Companhia Ambiental do Estado de São Paulo (CETESB), 2023. Qualidade das Águas Interiores no Estado de São Paulo. CETESB, São Paulo.

Conselho Nacional do Meio Ambiente (CONAMA), 2005. Classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências - 357/2005. CONAMA, Brasília.

Corredor-Santamaría, W.; Serrano Gómez, M.; Velasco-Santamaría, Y.M., 2016. Using genotoxic and haematological biomarkers as evidence of environmental contamination in the Ocoa River native fish, Villavicencio—Meta, Colombia. SpringerPlus, v. 5, 351. https://doi.org/10.1186/s40064-016-1753-0.

Cüce, H.; Kalipci, E.; Ustaoglu, F.; Baser, V.; Türkmen, M., 2022. Ecotoxicological health risk analysis of potential toxic elements accumulation in the sediments of Kızılırmak River. International Journal of Environmental Science and Technology, v. 19, 10759-10772. https://doi.org/10.1007/s13762-021-03869-z.

de Campos Ventura, B.; de Angelis, D. de F.; Marin-Morales, M.A., 2008. Mutagenic and genotoxic effects of the Atrazine herbicide in Oreochromis niloticus (Perciformes, Cichlidae) detected by the micronuclei test and the comet assay. Pesticide Biochemistry and Physiology, v. 90 (1), 42-51. https://doi.org/10.1016/j.pestbp.2007.07.009.

Ek-Huchim, J.P.; Árcega-Cabrera, F.; May-Tec, A.L.; Améndola-Pimenta, M.; Ceja-Moreno, V.; Rodríguez-Canul, R., 2022. Red blood cell cytotoxicity associated to heavy metals and hydrocarbons exposure in flounder fish from two regions of the Gulf of Mexico. Bulletin of Environmental Contamination and Toxicology, v. 108, 78-84. https://doi.org/10.1007/s00128-021-03176-w.

Essawy, E.; Abdelfattah, M.S.; El-Matbouli, M.; Saleh, M., 2021. Synergistic effect of biosynthesized silver nanoparticles and natural phenolic compounds against drug-resistant fish pathogens and their cytotoxicity: an in vitro study. Marine Drugs, v. 19 (1), 22. https://doi.org/10.3390/md19010022.

Factori, R.; Leles, S.M.; Novakowski, G.C.; Rocha, C.L.S.C.; Thomaz, S.M., 2014. Toxicity and genotoxicity of water and sediment from streams on dotted duckweed (Landoltia punctata). Brazilian Journal of Biology, v. 74 (4), 769-778. https://doi.org/10.1590/1519-6984.01013.

Feng, W.; Wang, T.; Zhu, Y.; Sun, F.; Giesy, J.P.; Wu, F., 2023. Chemical composition, sources, and ecological effect of organic phosphorus in water ecosystems: a review. Carbon Research, v. 2, 12. https://doi.org/10.1007/s44246-023-00038-4.

Ferreira, M.E.; Nogueira, S.H. de M.; Latrubesse, E.M.; Macedo, M.N.; Callisto, M.; Bezerra Neto, J.F.; Fernandes, G.W., 2022. Dams Pose a Critical Threat to Rivers in Brazil’s Cerrado Hotspot. Water (Switzerland), v. 14 (22), 3762. https://doi.org/10.3390/w14223762.

Fiskesjo, G., 1985. The Allium test as a standard in enrironmental monitoring. Hereditas, v. 102, 99-112. ISSN 0018-0661.

Freire, I.S.; Fascineli, M.L.; Piau, T.B.; Pereira, B.F.; Grisolia, C.K., 2023. Multilevel Toxicity Evaluations of Polyethylene Microplastics in Zebrafish (Danio rerio). International Journal of Environmental Research and Public Health, v. 20 (4), 3617. https://doi.org/10.3390/ijerph20043617.

Garcia-Käufer, M.; Gartiser, S.; Hafner, C.; Schiwy, S.; Keiter, S.; Gründemann, C.; Hollert, H., 2014. Genotoxic and teratogenic effect of freshwater sediment samples from the Rhine and Elbe River (Germany) in zebrafish embryo using a multi-endpoint testing strategy. Environmental Science and Pollution Research, v. 22, 16341-16357. https://doi.org/10.1007/s11356-014-3894-4.

Geras, S.; Oudalova, A.; Michalik, B.; Dikareva, N.; Dikarev, V., 2011. Chemosphere Geno-toxicity assay of sediment and water samples from the Upper Silesia post-mining areas, Poland by means of Allium-test. Chemosphere, v. 83 (8), 1133-1146. https://doi.org/10.1016/j.chemosphere.2011.01.008.

Jacoboski, B.K.; Fachinetto, J., 2022. Quality water assessment of the Matadouro Stream, Ijuí, River Grande do Sul, by physicochemical parameters and the Allium cepa test. Engenharia Sanitaria e Ambiental, v. 27 (3), 489-497. https://doi.org/10.1590/S1413-415220200388.

Kassa, B.A., 2021. Cytotoxicity and Genotoxicity evaluation of municipal wastewater discharged into the head of Blue Nile River using the Allium Cepa test. Scientific African, v. 13, e00911. https://doi.org/10.1016/j.sciaf.2021.e00911.

Kikuda, R.; Gomes, R.P.; Gama, A.R.; Silva, J.A.D.P.; Dos Santos, A.P.; Alves, K.R.; Arruda, P.N.; Scalize, P.S.; Vieira, J.D.G.; Carneiro, L.C.; Pires, D.D.J., 2022. Evaluation of water quality of Buritis Lake. Water (Switzerland), v. 14 (9), 1414. https://doi.org/10.3390/w14091414.

Leme, D.M.; Marin-Morales, M.A., 2008. Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water — a case study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, v. 650 (1), 80-86. https://doi.org/10.1016/j.mrgentox.2007.10.006.

Leme, D.M.; Marin-Morales, M.A., 2009. Allium cepa test in environmental monitoring: A review on its application. Mutation Research/Reviews in Mutation Research, v. 682 (1), 71-81. https://doi.org/10.1016/j.mrrev.2009.06.002.

MacDonald, P.L.; Gardner, R.C., 2000. Type I error rate comparisons of post hoc procedures for I × J chi-square tables. Educational and Psychological Measurement, v. 60 (5), 735-754. https://doi.org/10.1177/00131640021970871.

Marques, N.; Fazito, M.; Cunha, A., 2022. Tourism development discourse dynamics in a context of conflicts between mining and nature conservation in the Brazilian Cerrado Hotspot. Journal of Sustainable Tourism, v. 30 (11), 2574-2594. https://doi.org/10.1080/09669582.2021.1914066.

Mathur, J.; Panwar, R., 2024. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. Environmental Science and Pollution Research, v. 31, 21012-21027. https://doi.org/10.1007/s11356-024-32499-4.

Medeiros, J.C.C.; Coelho, F.F.; Teixeira, E., 2016. Alocação de biomassa e o Balanço de nutrientes relacionados à concentração de Nitrogênio e Fósforo em Salvinia auriculata (Salviniaceae). Brazilian Journal of Biology, v. 76, 461-468. https://doi.org/10.1590/1519-6984.21114.

Ministério do Meio Ambiente, Secretaria de Recursos Hídricos, 2006. Caderno da Região Hidrográfica do Tocantins-Araguaia, Ministério do Meio Ambiente, Secretaria de Recursos Hídricos, Brasília.

Montovani, C.P., 2021. Condutividade elétrica e cloretos como indicador da qualidade de água. Universidade Estadual de Campinas, Limeira.

Nascimento, H. dos S.; Crispim, B. do A.; Francisco, L.F.V.; Merey, F.M.; Kummrow, F.; Viana, L.F.; Inoue, L.A.K.A.; Barufatti, A., 2020. Genotoxicity evaluation of three anesthetics commonly employed in aquaculture using Oreochromis niloticus and Astyanax lacustris. Aquaculture Reports, v. 17, 100357. https://doi.org/10.1016/j.aqrep.2020.100357.

Nieder, R.; Benbi, D.K.; Reichl, F.X., 2018. Reactive Water-Soluble Forms of Nitrogen and Phosphorus and Their Impacts on Environment and Human Health. In: Soil Components and Human Health. Dordrecht, Springer Netherlands, pp. 223-255. https://doi.org/10.1007/978-94-024-1222-2_5.

Nogueira, M.G.; Perbiche-Neves, G.; de Oliveira Naliato, D.; Caglierani Casanova, S.M.; Roberto Debastiani-Júnior, J.; Espíndola, E.G., 2021. Limnology and water quality in La Plata basin (South America) - Spatial patterns and major stressors. Ecological Indicators, v. 120, 106968. https://doi.org/10.1016/j.ecolind.2020.106968.

Omar, W.A.; Zaghloul, K.H.; Abdel-Khalek, A.A.; Abo-Hegab, S., 2013. Risk assessment and toxic effects of metal pollution in two cultured and wild fish species from highly degraded aquatic habitats. Archives of Environmental Contamination and Toxicology, v. 65, 753-764. https://doi.org/10.1007/s00244-013-9935-z.

Palma-Silva, Albertoni, E.F.; Esteves, F.A., 2004. Charophytes as a nutrient and energy reservoir in a tropical coastal lagoon impacted by humans (RJ, Brazil). Brazilian Journal of Biology, 64 (3a), 479-487. https://doi.org/10.1590/S1519-69842004000300011.

Peresin, D.; Bortolin, T.A.; Chiarelo, M.; Moura e Silva, S.; Magro, T.D.; Menegat, D.; Schneider, V.E., 2023. Analysis of the concentration of pesticides in a watershed for public water supply in Brazil. Sustainable Water Resources Management, v. 9, 57. https://doi.org/10.1007/s40899-023-00841-2.

Pesnya, D.S.; Kurbatova, S.A.; Sharov, A.N.; Chernova, E.N.; Yershov, I.Y.; Shurganova, G. V.; Vodeneeva, E.L., 2022. Genotoxicity of natural water during the mass development of cyanobacteria evaluated by the Allium Test Method: a model experiment with microcosms. Toxins (Basel), v. 14 (5), 359. https://doi.org/10.3390/toxins14050359.

Pinheiro, E.P.; Marques, E.E.; Lolis, S.F., 2019. Monitoramento de empreendimentos hidrelétricos na bacia do rioTocantins, Brasil: o que aprendemos com os estudos das macrófitas aquáticas. Biotemas, v. 32 (3), 11-22. https://doi.org/10.5007/2175-7925.2019v32n3p11.

Prieto, Z.; León-Incio, J.; Quijano-Jara, C.; Fernández, R.; Polo-Benites, E.; Vallejo-Rodríguez, R.; Villegas-Sanchez, L., 2008. Efecto genotóxico del dicromato de potasio en eritrocitos de sangre periférica de Oreochromis niloticus (TILAPIA). Revista Peruana de Medicina Experimental y Salud Pública, v. 25 (1), 51-58. https://doi.org/10.17843/rpmesp.2008.251.1236.

Rambo, C.L.; Zanotelli, P.; Dalegrave, D.; De Nez, D.; Szczepanik, J.; Carazek, F.; Franscescon, F.; Rosemberg, D.B.; Siebel, A.M.; Magro, J.D., 2017. Hydropower reservoirs: cytotoxic and genotoxic assessment using the Allium cepa root model. Environmental Science and Pollution Research, v. 24, 8759-8768. https://doi.org/10.1007/s11356-017-8509-4.

Ramos, L.P.N.; Leite, D.M.; Macedo, W. de A.; Farias, C.B.M.; Oliveira, A.S. de, Dahmer, N.; karsburg, I.V., 2020. Evaluation of the cytotoxic and genotoxic effect of Allium cepa L. (Amaryllidaceae) root cells after exposure in water samples of five lakes of Alta Floresta, State of Mato Grosso. Revista Ambiente e Agua - An Interdisciplinary Journal of Applied Science, v. 15. https://doi.org/10.4136/1980-993X.

Ren, L.; Ding, K.; Hu, Z.; Wang, H.; Qi, N.; Xu, W., 2022. Processes and mechanisms of phosphorus mobility among sediment, water, and cyanobacteria under hydrodynamic conditions. Environmental Science and Pollution Research, v. 29, 9354-9368. https://doi.org/10.1007/s11356-021-16255-6.

Rocha, P.S.; Luvizotto, G.L.; Kosmehl, T.; Böttcher, M.; Storch, V.; Braunbeck, T.; Hollert, H., 2009. Sediment genotoxicity in the Tietê River (São Paulo, Brazil): In vitro comet assay versus in situ micronucleus assay studies. Ecotoxicology and Environmental Safety, v. 72, 1842-1848. https://doi.org/10.1016/j.ecoenv.2009.04.013.

Sacramento, E.B.; Azevedo, C. de A.; Abreu, S.T.; Borba, H.R.; Lima, V.M. de, 2020. Evaluation of the cytotoxic and genotoxic potential of waters of the Paraíba do Sul River Basin - Rj through the Allium cepa test system. Revista Ambiente e Água, v. 15 (3), e2521. https://doi.org/10.4136/1980-993X.

Sarkar, S.K.; Frančišković-Bilinski, S.; Bhattacharya, A.; Saha, M.; Bilinski, H., 2004. Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environment International, v. 30 (8), 1089-1098. https://doi.org/10.1016/j.envint.2004.06.005.

Silva, E.P. da, Benvindo-Souza, M.; Cotrim, C.F.C.; Motta, A.G.C.; Lucena, M.M.; Antoniosi Filho, N.R.; Pereira, J.; Formiga, K.T.M.; Melo e Silva, D., 2020. Genotoxic effect of heavy metals on Astyanax lacustris in an urban Stream. Heliyon, v. 6 (9), e05034. https://doi.org/10.1016/j.heliyon.2020.e05034.

Soto, D.A.; Luque, F.A.; Gnazzo, V., 2020. Peces de consumo humano como indicadores de contaminación ambiental por plaguicidas en el norte de Misiones, Argentina. Revista Argentina de Salud Pública, v. 11 (42), 7-14.

Tretyak, K.; Palianytsia, B., 2023. Dam spatial temperature deformations model development based on GNSS data. Journal of Performance of Constructed Facilities, v. 37 (4). https://doi.org/10.1061/jpcfev.cfeng-4312.

United States Environmental Protection Agency (USEPA), 1998. Great Lakes Dredged Material Testing and Evaluation Manual 1076. USEPA/USACE, [S.l.].

Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen, v. 9 (1), 1-38. https://doi.org/10.1080/05384680.1958.11904091.

Vasquez, F.D.M.; Rodríguez, V.J.V., 2023. Mitosis en diferentes variedades de Allium cepa “cebolla". Trujillo, Universidad Nacional de Trujillo.

Wagner, T.; Erickson, L.E., 2017. Sustainable management of eutrophic lakes and reservoirs. Journal of Environmental Protection, v. 8 (4), 436-463. https://doi.org/10.4236/jep.2017.84032.

Wetzel, R.G.; Likens, G.E., 2001. Limnological Analyses. Springer New York, New York. https://doi.org/10.1007/978-1-4757-3250-4

Wijeyaratne, W.M.D.N.; Wadasinghe, L.G.Y.J.G., 2019. Allium cepa bio assay to assess the water and sediment cytogenotoxicity in a tropical stream subjected to multiple point and nonpoint source pollutants. Journal of Toxicology, v. 2019, 5420124. https://doi.org/10.1155/2019/5420124.

Wijeyaratne, W.M.D.N.; Wickramasinghe, P.G.M.U., 2020. Chromosomal abnormalities in allium cepa induced by treated textile effluents: spatial and temporal variations. Journal of Toxicology, v. 10. https://doi.org/10.1155/2020/8814196.

Yusuf, Z.H., 2020. Phytoplankton as bioindicators of water quality in nasarawa reservoir, Katsina State Nigeria. Acta Limnologica Brasiliensia, v. 32, e4. https://doi.org/10.1590/s2179-975x3319.

Zachos, G., 2016. Regulating Cytokinesis. Encyclopedia of Cell Biology. Academic Press, v. 3, 494-503. https://doi.org/10.1016/B978-0-12-394447-4.30065-7.

Downloads

Published

2025-01-23

How to Cite

Benicio, S. H. M., Manso, J. A. X., Benvindo-Souza, M., Silva, D. de M. e, Cruz, A. D. da, & Formiga, K. T. M. (2025). Analysis of water quality, bioindicators, contaminants and their cytogenetic impacts in a Cerrado reservoir. Revista Brasileira De Ciências Ambientais, 60, e2115. https://doi.org/10.5327/Z2176-94782115