Microwave hydrodiffusion and gravity and pressurized-liquid extraction for obtaining bioactive compounds from Solanum viarum

Authors

DOI:

https://doi.org/10.5327/Z2176-94782070

Keywords:

active substances; pyrrolizidine alkaloids; plant secondary metabolites; vegetable extracts.

Abstract

Brazilian biodiversity is considered a source of bioactive substances, and one of the species found is Solanum viarum Dunal, which is mainly composed of pyrrolizidine alkaloids. The purpose of this study was to evaluate two non-conventional extraction techniques — microwave hydrodiffusion and gravity (MHG) and pressurized-liquid extraction (PLE) — in obtaining bioactive compounds from S. viarum. Different parameters were assessed that directly influenced the yield and chemical composition of extracts. For PLE, the percentage of ethanol and temperature were evaluated on yield and composition. For MHG, temperature and pressure were evaluated on the same responses. PLE presented the highest extract yield (26.11 wt.%) and bioactive compounds concentration, while the highest extract yield of MHG was 1.68 wt.%. Both techniques indicated efficiency in extracting integerrimine, senecionine, and quinic acid. Knowing the compounds present in plants, using different extractive methods, enables the development of research that addresses their possible potential in the future.

Downloads

Download data is not yet available.

References

Ali, A.; Wei, S.; Liu, Z.; Fan, X.; Sun, Q.; Xia, Q.; Liu, S.; Hao, J.; Deng, C., 2021. Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. Lebensmittel-Wissenschaft & Technologie, v. 147, 111549. https://doi.org/10.1016/j.lwt.2021.111549

Barrales, F.M.; Silveira, P.; Barbosa, P.P.M.; Ruviaro, A.R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J., 2018. Recovery of phenolic compounds from citrus by-products using pressurized liquids — an application to orange peel. Food and Bioproducts Processing, v. 112, 9-21. https://doi.org/10.1016/j.fbp.2018.08.006

Bousbia, N.; Abert, M.; Ferhat, M.A.; Petitcolas, E.; Meklati, B.Y.; Chemat, F., 2009. Comparison of two isolation methods for essential oil from rosemary leaves: hydrodistillation and microwave hydrodiffusion and gravity. Food Chemistry, v. 114, (1), 355-362. https://doi.org/10.1016/j.foodchem.2008.09.106

Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A V.; Barbero, G.F.; Rostagno, M.A., 2020. Extraction of flavonoids from natural sources using modern techniques. Frontiers in Chemistry, v. 8, 507887. https://doi.org/10.3389/fchem.2020.507887

Chouhan, K.B.S.; Tandey, R.; Sem, K.K.; Mehta, R.; Mandal, V., 2019. Critical analysis of microwave hydrodiffusion and gravity as a green tool for extraction of essential oils: Time to replace traditional distillation. Trends in Food Science & Technology, v. 92, 12-21. https://doi.org/10.1016/j.tifs.2019.08.006

Confortin, T.C.; Todero, I.; Luft, L.; Teixeira, A.L.; Mazutti, M.A.; Zabot, G.L.; Tres, M.V., 2019. Valorization of Solanum viarum dunal by extracting bioactive compounds from roots and fruits using ultrasound and supercritical CO2. Brazilian Journal of Chemical Engineering, v. 36, (4), 1689-1702. https://doi.org/10.1590/0104-6632.20190364s20190267

Confortin, T.C.; Todero, I.; Luft, L.; Schmaltz, S.; Ferreira, D.F.; Barin, J.S.; Mazutti, M.A.; Zabot, G.L.; Tres, M.V., 2021. Extraction of bioactive compounds from Senecio brasiliensis using emergent technologies. 3 Biotech, v. 11, 284. https://doi.org/10.1007/s13205-021-02845-1

Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A., 2021. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: current status and trends. Ultrasonics Sonochemistry, v. 74, 105584. https://doi.org/10.1016/j.ultsonch.2021.105584

Dobroslavić, E.; Elez Garofulić, I.; Šeparović, J.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V., 2022. Pressurized liquid extraction as a novel technique for the isolation of Laurus nobilis L. leaf polyphenols. Molecules, v. 27, (16), 5099. https://doi.org/10.3390/molecules27165099

Farias, C.A.A.A.; Moraes, D.P.; Neuenfeldt, N.H.; Zabot, G.L; Emanuelli, T.; Barin, J.S.; Ballus, C.A.; Barcia, M.T., 2022. Microwave hydrodiffusion and gravity model with a unique hydration strategy for exhaustive extraction of anthocyanins from strawberries and raspberries. Food Chemistry, v. 383, 132446. https://doi.org/10.1016/j.foodchem.2022.132446

Fernandes, P.A.R.; Bastos, R.; Calvão, J.; Neto, F.; Coelho, E.; Wessel, D.F.; Cardoso, S.M.; Coimbra, M.A.; Passos, C.P., 2021. Microwave hydrodiffusion and gravity as a sustainable alternative approach for an efficient apple pomace drying. Bioresource Technology, v. 333, 125207. https://doi.org/10.1016/j.biortech.2021.125207

Ferreira, D.F.; Lucas, B.N.; Voss, M.; Santos, D.; Mello, P.A.; Wagner, R.; Cravotto, G.; Barin, J.S., 2020. Solvent-free simultaneous extraction of volatile and non-volatile antioxidants from rosemary (Rosmarinus officinalis L.) by microwave hydrodiffusion and gravity. Industrial Crops and Products, v. 145, 112094. https://doi.org/10.1016/j.indcrop.2020.112094

Gajger, I.T.; Dar, S.A., 2021. Plant allelochemicals as sources of insecticides. Insects, v. 12, (3), 189. https://doi.org/10.3390/insects12030189

Getachew, A.T.; Holdt, S.L.; Meyer, A.S.; Jacobsen, C., 2022. Effect of extraction temperature on pressurized liquid extraction of bioactive compounds from Fucus vesiculosus. Marine Drugs, v. 20, (4), 1-16. https://doi.org/10.3390/md20040263

Gogoi, D.; Kumar, M.; Gruha, Y., 2023. A comprehensive review on “pyrolysis” for energy recovery. BioEnergy Research, v. 16, 1417-1437. https://doi.org/10.1007/s12155-023-10568-9

Hammami, F.; Issaoui, N., 2022. A DFT study of the hydrogen bonded structures of pyruvic acid–water complexes. Frontiers in Physics, v. 10, 1-9. https://doi.org/10.3389/fphy.2022.901736

Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E., 2010. Green processes for the extraction of bioactives from rosemary: chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. Journal of Chromatography A, v. 1217, (16), 2512-2520. https://doi.org/10.1016/j.chroma.2009.11.032

Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P., 2021. Sustainable green processing of grape pomace for the production of value-added products: an overview. Environmental Technology & Innovation, v. 23, 101592. https://doi.org/10.1016/j.eti.2021.101592

Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M., 2021. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, v. 11, (5), 968. https://doi.org/10.3390/agronomy11050968

Kausar, M.; Singh, B.K., 2018. Pharmacological evaluation of Solanum viarum Dunal leaves extract for analgesic and antipyretic activities. Journal of Drug Delivery and Therapeutics, v. 8, (4), 356-361. https://doi.org/10.22270/jddt.v8i4.1812

Kang, J. H.; Kim, S.; Moon, B., 2016. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction. Food Chemistry, v. 205, 140-145. https://doi.org/10.1016/j.foodchem.2016.03.013

Khaserao, S.; Somani, R., 2017. Evaluation of anti-obesity activity of solasodine in high fat diet-induced obesity in rat. International Journal of Pharmaceutical Sciences and Research, v. 9, (3), 23. https://doi.org/10.22159/ijpps.2017v9i3.16025

Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B., 2022. Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules, v. 27, (3), 730. https://doi.org/10.3390/molecules27030730

Lama-Muñoz, A.; Del Mar Contreras, M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E., 2019. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: optimization of technique and operating conditions. Food Chemistry, v. 293, 161-168. https://doi.org/10.1016/j.foodchem.2019.04.075

Lasta, H.F.B.; Lentz, L.; Mezzomo, N.; Ferreira, S.R.S., 2019. Supercritical CO2 to recover extracts enriched in antioxidant compounds from beetroot aerial parts. Biocatalysis and Agricultural Biotechnology, v. 19, 101169. https://doi.org/10.1016/j.bcab.2019.101169

Lingampally, V.; Solanki, V R.; Anuradha, D.L.; Raja, S.S., 2014. Effect of solasodine against last instar larvae of Tribolium confusum. Journal of Entomology and Zoology Studies, v. 2, (2), 118-120.

Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J., 2015. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: a comparison with conventional methods. Food Research International, v. 77, 675-683. https://doi.org/10.1016/j.foodres.2014.12.042

Martín, S.; Cuevas, J.M.; Elena, S.F.; Grande-Pérez, A., 2017. A putative antiviral role of plant cytidine deaminases. F1000Research, v. 6, 622. https://doi.org/10.12688/f1000research.11111.1

Nawaz, H.; Shad, M. A.; Rehman, N.; Andaleeb, H.; Ullah, N., 2020. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, v. 56. https://doi.org/10.1590/s2175-97902019000417129

Onyebuchi, C.; Kavaz, D., 2020. Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Scientific Reports, v. 10, 1-11. https://doi.org/10.1038/s41598-020-78847-5

Pandey, S.; Shukla, P.; Misra, P., 2018. Physical state of the culture medium triggers shift in morphogenetic pattern from shoot bud formation to somatic embryo in Solanum khasianum. Physiology and Molecular Biology of Plants, v. 24, 1295-1305. https://doi.org/10.1007/s12298-018-0582-8

Patel, P.; Prasad, A.; Gupta, S.C.; Niranjan, A.; Lehri, A.; Singh, S.S.; Misra, P.; Chakrabarty, D., 2021. Growth, phytochemical and gene expression changes related to the secondary metabolite synthesis of Solanum viarum Dunal. Industrial Crops and Products, v. 166, 113464. https://doi.org/10.1016/j.indcrop.2021.113464

Pawlowska, A.M.; Zannini, E.; Coffey, A.; Arendt, E.K., 2012. “Green preservatives”: combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Advances in Food and Nutrition Research, v. 66, 217-238. https://doi.org/10.1016/B978-0-12-394597-6.00005-7

Pereira, D.T.V.; Tarone, A.G.; Cazarin, C.B.B.; Barbero, G.F.; Martínez, J., 2019. Pressurized liquid extraction of bioactive compounds from grape marc. Journal of Food Engineering, v. 240, 105-113. https://doi.org/10.1016/j.jfoodeng.2018.07.019

Pereira, D.T.V.; Zabot, G.L.; Reyes, F.G.R.; Iglesias, A.H.; Martínez, J., 2021. Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: impact on phenolic yield, extraction kinetics and technical-economic evaluation. Innovative Food Science & Emerging Technologies, v. 67, 102549. https://doi.org/10.1016/j.ifset.2020.102549

Qaderi, M.M.; Martel, A.B.; Strugnell, C.A., 2023. Environmental factors regulate plant secondary metabolites. Plants, v. 12, (3), 447. https://doi.org/10.3390/plants12030447

Santos, M.S.N.; Wancura, J.H.C.; Oro, C.E.D.; Dallago, R.M.; Tres, M.V., 2022. Opportunities and challenges of plant bioactive compounds for food and agricultural-related areas. Phyton-International Journal of Experimental Botany, v. 91, (16), 1105-1127. https://doi.org/10.32604/phyton.2022.020913

Santos, P.H.; Kammers, J.C.; Silva, A.P.; Oliveira, J.V.; Hense, H., 2021. Antioxidant and antibacterial compounds from feijoa leaf extracts obtained by pressurized liquid extraction and supercritical fluid extraction. Food Chemistry, v. 344, 128620. https://doi.org/10.1016/j.foodchem.2020.128620

Silva, A.F.G.; Gomes, P.F.; Damião, P.D.; Oliveira, M.F., 2023. Toxicity and antioxidant activity of extracts from the leaves, bark and green fruits of Solanum viarum Dunal (Solanaceae). Cuadernos de Educación y Desarrollo, v. 15, (6). https://doi.org/10.55905/cuadv15n6-017

Thiemann, T., 2021. Isolation of phthalates and terephthalates from plant material–natural products or contaminants? The Open Chemistry Journal, v. 8, 1874-8422. https://doi.org/10.2174/1874842202108010001

Valanciene, E.; Malys, N., 2022. Advances in production of hydroxycinnamoyl-quinic acids: from natural sources to biotechnology. Antioxidants, v. 11, (12), 2427. https://doi.org/10.3390/antiox11122427

Venditti, A., 2020. What is and what should never be: artifacts, improbable phytochemicals, contaminants and natural products. Natural Product Research, v. 347, 1014-1031. https://doi.org/10.1080/14786419.2018.1543674

Viganó, J.; Brumer, I.Z.; Braga, P.A.C.; da Silva, J.K.; Maróstica Júnior, M.R.; Reyes Reyes, F.G.; Martínez, J., 2016. Pressurized liquids extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds. Food and Bioproducts Processing, v. 100, (Part A), 382-390. https://doi.org/10.1016/j.fbp.2016.08.011

Wianowska, D.; Gil, M., 2019. Critical approach to PLE technique application in the analysis of secondary metabolites in plants. TrAC Trends in Analytical Chemistry, v. 114, 314-325. https://doi.org/10.1016/j.trac.2019.03.018

Downloads

Published

2024-07-03

How to Cite

Confortin, T. C., Todero, I., Luft, L., Schmaltz, S., Ferreira, D. de F., Barin, J. S., Santos, M. S. N. dos, Mazutti, M. A., Zabot, G. L., & Tres, M. V. (2024). Microwave hydrodiffusion and gravity and pressurized-liquid extraction for obtaining bioactive compounds from Solanum viarum. Revista Brasileira De Ciências Ambientais (RBCIAMB), 59, e2070. https://doi.org/10.5327/Z2176-94782070

Issue

Section

Especial Section: Bioprocesses and Sustainability

Plaudit