Evaluating the attractiveness of different bait formulations for monitoring Liriomyza sativae (Diptera: Agromyzidae) adults
DOI:
https://doi.org/10.5327/Z2176-94782067Keywords:
miner fly; attractant substances; integrated management; leafminerAbstract
The growing need for sustainable agricultural practices drives the search for effective alternatives in pest management. Insects like Liriomyza sativae cause significant damage to crops, requiring monitoring and control methods that minimize the use of chemical pesticides. In this context, the use of natural and synthetic attractants for pest capture offers a promising solution while contributing to the preservation of ecological balance. The objective of this work was to study the attractive effect of different formulations for L. sativae adults. The formulations were divided into two groups according to their composition. For group 1, they were based on vinegar and sugar, and for group 2, formulations were based on molasses, invert sugar, hydrolyzed protein, and eugenold. The attractiveness of the formulations was evaluated based on free choice. They were placed in tube-shaped plastic containers and randomly arranged in TNT cages. Evaluations were performed every 48 hours by counting the number of adults in the containers until there was a low capture rate. Data were subjected to analysis of variance testing and means were compared using the Scott-Knott test at 5% significance level. All formulations tested were attractive to adults of L. sativae, with groups 1 and 2 reaching their maximum averages of 55.60 and 68.00 adults, respectively. Both occurred during the second evaluation. Over time, all formulations showed a reduction in capture rate. The use of effective attractants promotes traps that monitor and even control the pest population in a more sustainable way, benefiting the agroecosystem with sustainable agricultural practices. Furthermore, the research expands knowledge about the chemical ecology of insect pests, providing a basis for the chemical communication of these organisms.
Downloads
References
Anorbayev, A.R.; Isashova, U.А.; Rakhmonova, М.K.; Jumayeva, A.N., 2019. Development and harm of Liriomyza sativa Blanchard leaf-mining flies. Indonesian Journal of Innovation Studies, v. 8. https://doi.org/10.21070/IJINS.V7I0.123.
Araujo, E.L.; Nogueira, C.H.F.; Menezes Netto, A.C.; Bezerra, C.E.S., 2013. Biological aspects of the leafminer Liriomyza sativae (Diptera: Agromyzidae) on melon (Cucumis melo L.). Ciência Rural, v. 43 (4), 579-582. https://doi.org/10.1590/S0103-84782013000400003.
Araujo, E.L.; Pinheiro, S.A.M.; Geremias, L.D.; Menezes Netto, A.C.; Macedo, L.P.M., 2007. Rearing technique for the leafminer fly Liriomyza trifolii (Burgess) (Diptera: Agromyzidae). Campo Digital, v. 2 (1), 22-28.
Arios-Caro, L.; López-Martínez, V.; Aragón-García, A.; Castañeda-Vildózola, Á.; Hernández-Fuentes, L.M., 2024. Natural food baits for capturing adults of Zaprionus indianus and Drosophila suzukii in fig orchards. Southwestern Entomologist, v. 49 (1), 30-38. https://doi.org/10.3958/059.049.0103.
Biasazin, T.D.; Herrera, S.L.; Bengtsson, M.; Lemmen-Lechelt, J.K.; Dekker, T.; Karlsson, M.F.; Chernet, H.T., 2018. Detection of volatile constituents from food lures by tephritid fruit flies. Insects, v. 9 (3), 1-14. https://doi.org/10.3390/insects9030119.
Bragard, C.; Dehnen‐Schmutz, K.; Serio, F.; Gonthier, P.; Jacques, M.; Miret, J.; Justesen, A.; Magnusson, C.; Milonas, P.; Navas‐Cortés, J.; Parnell, S.; Potting, R.; Reignault, P.; Thulke, H.; Werf, W.; Civera, A.; Yuen, J.; Zappalà, L.; Czwienczek, E.; Streissl, F.; MacLeod, A., 2020. Pest categorisation of Liriomyza sativae. EFSA Journal, v. 18. https://doi.org/10.2903/j.efsa.2020.6037.
Brezolin, A.N.; Martinazzo, J.; Muenchen, D.K.; de Cezaro, A.M.; Rigo, A.A.; Steffens, C.; Steffens, J.; Blassioli-Moraes, M.C.; Borges, M., 2018. Tools for detecting insect semiochemicals: a review. Analytical and Bioanalytical Chemistry, v. 410 (17), 4091-4108. https://doi.org/10.1007/s00216-018-1118-3.
Candia, I.F.; Bautista, V.; Larsson Herrera, S.; Walter, A.; Ortuño Castro, N.; Tasin, M.; Dekker, T., 2019. Potential of locally sustainable food baits and traps against the Mediterranean fruit fly Ceratitis capitata in Bolivia. Pest Management Science, v. 75 (6), 1671-1680. https://doi.org/10.1002/ps.5286.
Cha, D.H.; Hesler, S.P.; Park, S.; Adams, T.B.; Zack, R.S.; Rogg, H.; Loeb, G.M.; Landolt, P.J., 2015. Simpler is better: fewer non‐target insects trapped with a four‐component chemical lure vs. a chemically more complex food‐type bait for Drosophila suzukii. Entomologia Experimentalis et Applicata, v. 154 (3), 251-260. https://doi.org/10.1111/eea.12276.
Chapman, R.F., 1998. The Insects Structure and Function. 4. ed. Cambridge University Press, Cambridge, 770 p.
Cheng, K.Y.; Colbath, R.A.; Frye, M.A., 2019. Olfactory and neuromodulatory signals reverse visual object avoidance to approach in Drosophila. Current Biology, v. 29 (12), 2058-2065. https://doi.org/10.1016/j.cub.2019.05.010.
Cloonan, K.R.; Hernández-Cumplido, J.; De Sousa, A.L.V.; Ramalho, D.G.; Burrack, H.J.; Della Rosa, L.; Diepenbrock, L.M.; Ballman, E.; Drummond, F.A.; Gut, L.J.; Hesler, S.; Isaacs, R.; Leach, H.; Loeb, G.M.; Nielsen, A.L.; Nitzsche, P.; Park, K.R.; Syed, Z.; Timmeren, S.V.; Wallingford, A.K.; Walton, V.M.; Rodriguez-Saona, C., 2019. Laboratory and field evaluation of host-related foraging odor-cue combinations to attract Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, v. 112 (6), 2850-2860. https://doi.org/10.1093/jee/toz224.
Cruz, C.A., 1988. Observações sobre o comportamento de Liriomyza huidobrensis Blanchard, 1926 (Diptera-Agromyzidae) em cultura de batatinha (Solanun tuberosum L.). Master’s Dissertation, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba. doi:10.11606/D.11.2018.tde-20181127-155533. Retrieved 2024-21-03, from https://www.teses.usp.br/teses/disponiveis/11/11146/tde-20181127-155533/en.php
Devescovi, F.; Fernández, P.C.; Bachmann, G.E.; Nussenbaum, A.L.; Segura, D.F., 2024. Direct and indirect host‐related volatile compounds attract a fruit fly parasitoid, Diachasmimorpha longicaudata. Entomologia Experimentalis et Applicata, v. 172 (6), 502-512. https://doi.org/10.1111/eea.13417.
El-Sayed, A.M.; Heppelthwaite, V.J.; Manning, L.M.; Gibb, A.R.; Suckling, D.M., 2005. Volatile constituents of fermented sugar baits and their attraction to lepidopteran species. Journal of Agricultural and Food Chemistry, v. 53 (4), 953-958. https://doi.org/10.1021/jf048521j.
Epsky, N.D.; Kendra, P.E.; Schnell, E.Q., 2014. History and development of food-based attractants. In: Shelly, T.E.; Epsky, N.; Jang, E.B.; Reyes-Flores, J.; Vargas, R.I., Trapping and the detection, control and regulation of Tephritid fruit flies. Springer, Dordrecht, The Netherlands, pp. 75-118. https://doi.org/10.1007/978-94-017-9193-9_3.
Fenoglio, M.S.; Videl, M.; Salvo, A.; Morales, J.M., 2019. Dispersal of the pea leaf miner Liriomyza huidobrensis (Blanchard, 1926) (Diptera: Agromyzidae): a field experiment. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, v. 51 (2), 343-352. ISSN (online): 1853-8665.
Fernandes, W.C.; Pastori, P.L.; Dias-Pini, N.S.; Feitosa, F.A.A.; Pereira, F.F., 2019. Pragas do meloeiro. In: Guimarães, M.A.; Aragão, F.A.S. (Org.), Produção de Melão. v. 1. Editora UFV, Viçosa, pp. 245-265.
França, S.M.D.; Oliveira, J.V.D.; Picanço, M.C.; Lôbo, A.P.; Silva, É.M.D.; Gontijo, P.D.C., 2009. Seleção de atrativos alimentares e toxicidade de inseticidas para o manejo da broca-pequena-do-tomateiro. Pesquisa Agropecuária Brasileira, v. 44, 561-568. https://doi.org/10.1590/S0100-204X2009000600003.
Giang, T.; He, J.; Belaidi, S.; Scholz, H., 2017. Key odorants regulate food attraction in Drosophila melanogaster. Frontiers in Behavioral Neuroscience, v. 11, 160. https://doi.org/10.3389/fnbeh.2017.00160.
Guimarães, J.A.; Michereff Filho, M.; Oliveira, V.; De Liz, R.S.; Araújo, E., 2009. Biologia e manejo de mosca minadora no meloeiro. Circular Técnica 77. Embrapa, Brasília, 9 p.
Heath, R.R.; Vazquez, A.; Schnell, E.Q.; Villareal, J.; Kendra, P.E.; Epsky, N.D., 2009. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae). Journal of Economic Entomology, v. 102 (6), 2371-2376. https://doi.org/10.1603/029.102.0644.
Kang, L.; Chen, B.; Wei, J.N.; Liu, T.X., 2009. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annual Review of Entomology, v. 54, 127-145. https://doi.org/10.1146/annurev.ento.54.110807.090507.
Kong, W.N.; Wang, Y.; Guo, Y.F.; Chai, X. H.; Li, J.; Ma, R.Y., 2020. Behavioral effects of different attractants on adult male and female oriental fruit moths, Grapholita molesta. Pest Management Science, v. 76 (9), 3225-3235. https://doi.org/10.1002/ps.5878
Lasa, R.; Aguas-Lanzagorta, S.; Williams, T., 2020. Agricultural-grade apple cider vinegar is remarkably attractive to Drosophila suzukii (Diptera: Drosophiliadae) in Mexico. Insects, v. 11 (7), 448. https://doi.org/10.3390/insects11070448.
Lasa, R.; Williams, T., 2021. Does ammonia released from protein-based attractants modulate the capture of Anastrepha obliqua (Diptera: Tephritidae)? Insects, v. 12 (2), 156. https://doi.org/10.3390/insects12020156.
Liu, W.X.; Wang, W.X.; Zhang, Y.B.; Wang, W.; Lu, S.L.; Wan, F.H., 2015. Adult diet affects the life history and host-killing behavior of a host-feeding parasitoid. Biological Control, v. 81, 58-64. https://doi.org/10.1016/j.biocontrol.2014.11.002.
Mayo, I.; Anderson, M.; Burguete, J.; Chillida, E.R., 1987. Structure of superficial chemoreceptive sensilla on the third antennal segment of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). International Journal of Insect Morphology and Embryology, v.16 (2), 131-141. https://doi.org/10.1016/0020-7322(87)90013-4.
Mazor, M.L., 2018. The role of acetic acid in the attraction of the Mediterranean fruit fly Ceratitis capitata to ammonium acetate. Phytoparasitica, v. 46 (3), 377-381. https://doi.org/10.1007/s12600-018-0666-6.
Murguía-González, J.; Landero-Torres, I.; Leyva-Ovalle, O.R.; Galindo-Tovar, M.E.; Llarena-Hernández, R.C.; Presa-Parra, E.; García-Martínez, M.A., 2018. Efficacy and cost of trap–bait combinations for capturing Rhynchophorus palmarum L. (Coleoptera: Curculionidae) in ornamental palm polycultures. Neotropical Entomology, v. 47, 302-310. https://doi.org/10.1007/s13744-017-0545-8.
Nation, J.L., 2022. Nutrition. In: Nation, J.L. (Ed.), Insect physiology and biochemistry. CRC Press, Boca Raton, pp. 65-87. https://doi.org/10.1201/9781003279822.
Navarro‐Llopis, V.; Primo, J.; Vacas, S., 2015. Bait station devices can improve mass trapping performance for the control of the Mediterranean fruit fly. Pest Management Science, v. 71 (7), 923-927. https://doi.org/10.1002/ps.3864.
Niogret, J.; Epsky, N.D., 2018. Attraction of Ceratitis capitata (Diptera: Tephritidae) sterile males to essential oils: The importance of linalool. Environmental Entomology, v. 47 (5), 1287-1292. https://doi.org/10.1093/ee/nvy096.
Paspati, A.; Karakosta, E.; Balanza, V.; Rodríguez-Gomez, A.; Gravalos, C.; Cifuentes, D.; Tsagkarakou, A., 2023. Effects of novel and commercial phytochemicals on beneficial arthropods. Crop Protection, v. 174, 106381. https://doi.org/10.1016/j.cropro.2023.106381.
Plata-Rueda, A.; Martínez, L.C.; Fernandes, F.L.; Ramalho, F.D.S.; Zanuncio, J.C.; Serrão, J.E., 2016. Interactions between the bud rot disease of oil palm and Rhynchophorus palmarum (Coleoptera: Curculionidae). Journal of Economic Entomology, v. 109 (2), 962-965. https://doi.org/10.1093/jee/tov343.
Quinn, B.P.; Bernier, U.R.; Geden, C.J.; Hogsette, J.A.; Carlson, D.A., 2007. Analysis of extracted and volatile components in blackstrap molasses feed as candidate house fly attractants. Journal of Chromatography A, v. 1139 (2), 279-284. https://doi.org/10.1016/j.chroma.2006.11.039.
R Development Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna (Accessed February 01, 2021) at:. https://www.R-project.org/
Raga, A.; Souza Filho, M.F.D., 2021. Manual de moscas-das-frutas: medidas para o controle sustentável. Coordenação técnica: Haroldo Xavier Linhares Volpe. Fundecitrus, Araraquara, 33 p. ISBN: 978-65-990337-1-1.
Raga, A.; Vieira, S.M.J., 2015. Attractiveness of hydrolyzed corn protein mixed with borax on fruit flies (Diptera: Tephritidae) in field cages. Arquivos do Instituto Biológico de São Paulo, v. 82, 1-8. https://doi.org/10.1590/1808-1657000872013.
Ridland, P.M.; Umina, P.A.; Pirtle, E.I.; Hoffmann, A.A., 2020. Potential for biological control of the vegetable leafminer, Liriomyza sativae (Diptera: Agromyzidae), in Australia with parasitoid wasps. Austral Entomology, v. 59 (1), 16-36. https://doi.org/10.1111/aen.12444.
Rocha, L.I.R.; Nogueira, C.H.F.; Costa, E.M.; Oliveira, J.J.D.; Araujo, E.L., 2010. Attractiveness of food substances on the fruit fly Liriomyza sativae (Diptera: Agromyzidae) and its parasitoid Opius sp. (Hymenoptera: Braconidae). Revista Verde de Agroecologia e Desenvolvimento Sustentável Grupo Verde de Agricultura Alternativa, v. 5 (5), 88-93.
Sadiq, F.H.; Al-Nadawi, F.A.M.; Mahmood, Z.T., 2020. The Leaf Miners Liriomyza spp. (Diptera: Agromyzidae): the damage nature and the economic importance: a review. Plant Archives, v. 20 (Suppl. 2), 1173-1175. e-ISSN (online): 2581-6063.
Shelly, T.; Kurashima, R.; Fezza, T., 2020. Field evaluation of three-component solid food-based dispenser versus torula yeast for capturing Mediterranean and oriental fruit flies (Diptera: Tephritidae). Journal of Asia-Pacific Entomology, v. 23 (3), 825-831. https://doi.org/10.1016/j.aspen.2020.07.010.
Siegel, J.P.; Burks, C.S.; Wilson, H., 2024. Comparação ao longo da temporada de iscas armadilha para manejo integrado da lagarta do umbigo (Lepidoptera: Pyralidae) em amêndoa e pistache. CABI Agriculture and Bioscience, v. 5, 30. https://doi.org/10.1186/s43170-024-00236-z.
Stupp, P.; Junior, R.M.; Cardoso, T.D.N.; Padilha, A.C.; Hoffer, A.; Bernardi, D.; Botton, M., 2021. Mass trapping is a viable alternative to insecticides for management of Anastrepha fraterculus (Diptera: Tephritidae) in apple orchards in Brazil. Crop Protection, v. 139, 105391. https://doi.org/10.1016/j.cropro.2020.105391
Supartha, I.W.; Susila, I.W.; Rauf, A.; Shepard, B.M.; Utama, I.W.E.K.; Sandikayasa, I.W.; Wiradana, P.A., 2023. Evaluation of the community structure leafminer fly, Liriomyza spp. (Diptera: Agromyzidae) and their parasitoids on various host plant families in Bali province. HAYATI Journal of Biosciences, v. 30 (3), 432-444. https://doi.org/10.4308/hjb.30.3.432-444.
Takeda, M.; Kawai, A.; Mitsunaga, T.; Tsukazaki, H.; Yamashita, K.I.; Wako, T., 2020. A novel method for evaluating the egg killing defenses and varietal resistance of the bunching onion against Liriomyza chinensis (Diptera: Agromyzidae) via the artificial inoculation of eggs. Applied Entomology and Zoology, v. 55 (1), 93-103. https://doi.org/10.1007/s13355-019-00657-7.
Upakut, S.; Sukontason, K.L.; Bunchu, N.; Pereira, R.M.; Sukontason, K., 2017. Behavioral response of house fly, Musca domestica L. (Diptera: Muscidae) to natural products. The Southeast Asian Journal of Tropical Medicine and Public Health, v. 48 (3), 561-569.
Verhulst, N.O.; Juurlink, M.; Wondwosen, B.; Rugaimukamu, S.; Hill, S.R.; Ignell, R.; Koenraadt, C.J.M.; Spitzen, J., 2023. Fermenting molasses and a synthetic odour blend to attract blood‐fed Anopheles coluzzii. Medical and Veterinary Entomology, v. 37 (2), 228-237. https://doi.org/10.1111/mve.12622.
Weddle, P.W.; Welter, S.C.; Thomson, D., 2009. History of IPM in California pears—50 years of pesticide use and the transition to biologically intensive IPM. Pest Management Science: formerly Pesticide Science, v. 65 (12), 1287-1292. https://doi.org/10.1002/ps.1865.
Zhao, Y.X.; Kang, L., 2002. Role of plant volatiles in host plant location of the leafminer, Liriomyza sativae (Diptera: Agromyzidae). Physiological Entomology, v. 27 (2), 103-111. https://doi.org/10.1046/j.1365-3032.2002.00275.x.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.