Estimating the risk of wildfires in the municipality of Rio Verde, Goiás State, Central Brazil

Authors

DOI:

https://doi.org/10.5327/Z2176-94782006

Keywords:

wildfires; risk modeling; vegetation; remote sensing

Abstract

The damage caused by wildfires has major impacts each year, not only on the environment but also on the economy and public health. The present study aimed at mapping the fire risk in the different areas of the municipality of Rio Verde, in the Central Brazilian state of Goiás. A number of factors that influence the occurrence of wildfires were considered in this analysis, including the orientation of the relief, the slope, population density, proximity of homes, the road network, and land cover and use. The analytical hierarchy process was used to determine the appropriate weights for each of the variables. The fire risk index was divided into five classes: water, low, moderate, high, and very high risks. Class 4 (high risk) was the most frequently recorded within the study area, followed by classes 3 (moderate risk) and 2 (low risk). Subsequently, the heat spots recorded by remote sensing were related to fire risk indices, and the framing in the classes was verified. Overall, 16.36% of the heat spots were considered low risk (class 2), while 36.29% were classified as moderate risk (class 3), and 46.72% as high risk (class 4). These findings indicate that the fire risk index provides an adequate and effective parameter for the spatial assessment of the distribution of fire events (controlled burns or wildfires) in the municipality of Rio Verde.

Downloads

Download data is not yet available.

References

Aires, L.S.; Angelini, L.P. Avaliação espaço-temporal de focos de calor no sudoeste do estado de Goiás, Brasil. Revista Brasileira de Geografia Física, v. 15 (06), 3136-3155, 2022.

Argañaraz, J.P.; Landi, M.A.; Scavuzzo, C.M.; Bellis, L.M., 2018. Determining fuel moisture thresholds to assess wildfire hazard: A contribution to an operational early warning system. PLOS One, v. 13 (10), e0204889. https://doi.org/10.1371/journal.pone.0204889.

Buschinelli, C.C.A.; Costa, B.M.R., 2020. Expansão da silvicultura no Brasil Central: estudo de caso em Rio Verde (GO). Embrapa Meio Ambiente-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E), [S.l.] (Accessed February 13, 2023) at:. https://www.infoteca.cnptia. embrapa.br/infoteca/handle/doc/1126480.

Cavalcante, R.N.B.; Sousa, M.H.R.; Sousa, J.P.R., 2019. A interdisciplinaridade entre matemática e geografia: inferindo conceitos de localização e distâncias na cidade. Revista Encantar-Educação, Cultura e Sociedade, v. 1 (3), 07-20. (Accessed April 25, 2023) at:. https://www.homologacao.revistas. uneb.br/ index.php/encantar/article/view/8150.

Chuvieco, E.; Congalton, R.G., 1989. Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote sensing of Environment, v. 29 (2), 147-159. https://doi.org/10.1016/0034-4257(89)90023-0.

Deichmann, U., 1996. A review of spatial population database design and modeling. National Center for Geographic Information and Analysis, Santa Barbara, 58 p (Accessed October 16, 2023) at:. https://escholarship.org/uc/item/6g190671.

Feizizadeh, B.; Omarzadeh, D.; Mohammadnejad, V.; Khallaghid, H.; Sharifi, A.; Golmohmadzadeh Karkarg, B., 2023. An integrated approach of artificial intelligence and geoinformation techniques applied to forest fire risk modeling in Gachsaran, Iran. Journal of Environmental Planning and Management, v. 66 (6), 1369-1391. https://doi.org/10.1080/09640568.2022.2027747.

Fielding, A.H.; Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, v. 24, 38-49. https://doi.org/10.1017/S0376892997000088.

Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J., 2019a. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire, v. 2 (3), 50. https://doi.org/10.3390/fire2030050.

Ghorbanzadeh, O.; Valizadeh Kamran, K.; Blaschke, T.; Aryal, J.; Naboureh, A.; Einali, J.; Bian, J., 2019b. Spatial prediction of wildfire susceptibility using field survey gps data and machine learning approaches. Fire, v. 2 (3), 43. https://doi.org/10.3390/fire2030043.

Guth, P.; Kane, M., 2021. Slope, aspect, and hillshade algorithms for non‐square digital elevation models. Transactions in GIS, v. 25 (5), 2309-2332. https://doi.org/10.1111/tgis.12852.

Instituto Brasileiro de Geografia e Estatística (IBGE), 2010. Downloads. Censo_Demográfico_2010 (Accessed January 16, 2021) at:. https://www.ibge.gov.br/estatisticas/downloads-estatisticas.html.

Instituto Brasileiro de Geografia e Estatística (IBGE), 2020. Rio Verde (Accessed January 9, 2022) at:. https://cidades.ibge.gov.br/brasil/go/rio-verde/pesquisa.

Instituto Brasileiro de Geografia e Estatística (IBGE), 2022. Organização do território. Malhas territoriais (Accessed August 30, 2021) at:. https://www.ibge.gov.br/geociências/organizacao-do-territorio/malhas-territoriais.

Instituto Nacional de Meteorologia (INMET), 2021. Banco de Dados Meteorológico para Ensino e Pesquisa - BDMEP. INMET, Brasília (Accessed January 14, 2020) at:. .

Instituto Nacional de Pesquisas Espaciais (INPE), 2021. INPE Programa Queimadas - BD Queimadas. Rio Verde – GO (Accessed January 14, 2021) at:. .

Japan Aeroepace Exploration Agency (JAXA), ano. ALOS Data Users Handbook (Accessed May 16, 2022) at:. https://www.eorc.jaxa.jp/ALOS/en/doc/fdata/ALOSHB_RevC_EN.pdf.

Juvanhol, R.S.; Fiedler, N.C.; Santos, A.R., 2015. Modelagem de risco de incêndios em florestas naturais com o uso de geotecnologias. Santos, A.R.; Ribeiro, C.A.A.S.; Peluzio, J.B.E., Geotecnologias & Análise Ambiental. Alegre: Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, pp. 160-172. Available at: https://www.mundogeomatica.com/Publicacoes/Capitulo23.pdf

Lamat, R.; Kumar, M.; Kundu, A.; Lal, D., 2021. Forest fire risk mapping using analytical hierarchy process (AHP) and earth observation datasets: A case study in the mountainous terrain of Northeast India. SN Applied Sciences, v. 3 (4), 425. https://doi.org/10.1007/s42452-021-04391-0.

Liao, Z.; Van Dijk, A.I.J.M.; He, B.; Rozas Larraondo, P.; Scarth, P.F., 2020. Woody vegetation cover, height and biomass at 25-m resolution across Australia derived from multiple site, airborne and satellite observations. International Journal of Applied Earth Observation and Geoinformation, v. 93, 102209. https://doi.org/10.1016/j.jag.2020.102209.

Mansoor, S.; Farooq, I.; Kachroo, M.M.; Mahmoud, A.E.D.; Fawzy, M.; Popescu, S.M.; Alyemeni, M.N.; Sonne, C.; Rinklebe, J.; Ahmad, P., 2022. Elevation in wildfire frequencies with respect to the climate change. Journal of Environmental Management, v. 301, 113769. https://doi.org/10.1016/j.jenvman.2021.113769.

Milanović, S.; Marković, N.; Pamučar, D.; Gigović, L.; Kostić, P.; Milanović, S.D., 2020. Forest fire probability mapping in eastern Serbia: Logistic regression versus random forest method. Forests, v. 12 (1), 5. https://doi.org/10.3390/f12010005.

Mohajane, M.; Costache, R.; Karimi, F.; Pham, Q.B.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F., 2021. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecological Indicators, v. 129, 107869. https://doi.org/10.1016/j.ecolind.2021.107869.

Mohammad, L.; Bandyopadhyay, J.; Sk, R.; Mondal, I.; Nguyen, T.T.; Lama, G.F.C.; Tran Anh, D., 2023. Estimation of agricultural burned affected area using NDVI and dNBR satellite-based empirical models. Journal of Environmental Management, v. 343, 118226. https://doi.org/10.1016/j.jenvman.2023.118226.

Moro, I.P.; Oliveira, F.., 2023. Gestão de combate a incêndios: distribuição espacial e temporal no sul do estado do Espírito Santo. Revista do Serviço Público, v. 74 (4), 846-868. https://doi.org/10.21874/rsp. v74i4.9887

Nikhil, S.; Homian Danumah, J.; Saha, S.; Prasad, M.K.; Ambujendran, R.; Mammen, P.C.; Ajin, R.S.; Kuriakose, S.L., 2021. Application of GIS and AHP method in forest fire risk zone mapping: a study of the Parambikulam tiger reserve, Kerala, India. Journal of Geovisualization and Spatial Analysis, v. 5 (1), 14. https://doi.org/10.1007/s41651-021-00082-x.

Novo, A.; Fariñas-Álvarez, N.; Martínez-Sánchez, J.; González-Jorge, H.; Fernández-Alonso, J.M.; Lorenzo, H., 2020. Mapping forest fire risk—a case study in Galicia (Spain). Remote Sensing, v. 12 (22), 3705. https://doi.org/10.3390/rs12223705.

Oliveira, V.F.R.; Silva, E.R.S.; Vick, E.P.; Silva, B.H.M. da; Lima, C.G.R.; Bacani, V.M., 2020. Geoprocessamento aplicado ao mapeamento de risco a incêndios. Revista Brasileira de Geografia Física, v. 13 (03), 1194-1212. https://doi.org/10.26848/rbgf.v13.3.p1194-1212.

Parajuli, A.; Gautam, A.P.; Sharma, S.P.; Bhujel, K.B.; Sharma, G.; Thapa, P.B.; Bist, B.S.; Poudel, S., 2020. Forest fire risk mapping using GIS and remote sensing in two major landscapes of Nepal. Geomatics, Natural Hazards and Risk, v. 11 (1), 2569-2586. https://doi.org/10.1080/19475705.2020.1853251.

Pereira, P.; Bogunovic, I.; Zhao, W.; Barcelo, D., 2021. Short-term effect of wildfires and prescribed fires on ecosystem services. Current Opinion in Environmental Science & Health, v. 22, 100266. https://doi.org/10.1016/j.coesh.2021.100266

Pew, K.L.; Larsen, C.P.S., 2001. GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada. Forest ecology and management, v. 140 (1), 1-18. https://doi.org/10.1016/S0378-1127(00)00271-1.

Pimenta, L.B.; Beltrão, N.E.S.; Gemaque, A.M.S.; Tavares, P.A., 2019. Processo Analítico Hierárquico (AHP) em ambiente SIG: temáticas e aplicações voltadas à tomada de decision utilizando critérios espaciais. Interações (Campo Grande), v. 20, 407-420. https://doi.org/10.20435/inter.v20i2.1856.

Polidori, L., 2024. Sensoriamento remoto por radar a nível de pós-graduação no Brasil: desafios e soluções. Revista Presença Geográfica, v. 11 (1), 14-20. https://doi.org/10.36026/rpgeo.v11i1.7768.

Pourghasemi, H.R.; Gayen, A.; Edalat, M.; Zarafshar, M.; Tiefenbacher, J.P., 2020. Is multi-hazard mapping effective in assessing natural hazards and integrated watershed management. Geoscience Frontiers, v. 11 (4), 1203-1217. https://doi.org/10.1016/j.gsf.2019.10.008.

Pradeep, G.S.; Homian Danumah, J.; Nikhil, S.; Prasad, M.K.; Patel, N.; Mammen, P.C.; Rajaneesh, A.; Oniga, V.-E.; Ajin, R.S.; Kuriakose, S.L., 2022. Forest fire risk zone mapping of Eravikulam National Park in India: a comparison between frequency ratio and analytic hierarchy process methods. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, v. 43 (1), 199-217. https://doi.org/10.5552/crojfe.2022.1137.

Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.-M., 2020. Ubiquitous GIS-based forest fire susceptibility mapping using artificial intelligence methods. Remote Sensing, v. 12 (10), 1689. https://doi.org/10.3390/rs12101689.

Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology, v. 15 (3), 234-281. https://doi.org/10.1016/0022-2496(77)90033-5.

Saaty, T.L., 1980. The analytic hierarchy process. McGraw-Hill, New York, 278 p. https://doi.org/10.1016/0270-0255(87)90473-8.

Saaty, T.L., 2005. Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS Publications, Pittsburgh.

Sakellariou, S.; Cabral, P.; Caetano, M.; Pla, F.; Painho, M.; Christopoulou, O.; Sfougaris, A.; Dalezios, N.; Vasilakos, C., 2020. Remotely sensed data fusion for spatiotemporal geostatistical analysis of forest fire hazard. Sensors, v. 20 (17), 5014. https://doi.org/10.3390/s20175014

Santos, A.R.; Ribeiro, C.A.A.S.; Peluzio, J.B.E.; de Oliveira Peluzio, T.M.; Moreira, G.L.; Magalhães, I.A.L., 2015. Geotecnologias & Análise Ambiental. Alegre: Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Instituto Federal de Educação, Ciência e Tecnologia do Estado do Espírito Santo e Universidade Federal de Viçosa

Santos, F.F.M.; Durigan, G.; Boschi, R.S.; Ivanauskas, N.; Rodrigues, R.R., 2024. Tree community dynamics in the cerradão (2002-2016): A case of biome shift. Forest Ecology and Management, v. 555, 121698. https://doi.org/10.1016/j.foreco.2024.121698.

Saranya, T.; Saravanan, S., 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, v. 6 (2), 1105-1122. https://doi.org/10.1007/s40808-020-00744-7.

Scholtz, R.; Prentice, J.; Tang, Y.; Twidwell, D., 2020. Improving on MODIS MCD64A1 burned area estimates in grassland systems: A case study in Kansas flint hills tall grass prairie. Remote Sensing, v. 12 (13), 2168. https://doi.org/10.3390/rs12132168.

Shi, X.; Yang, C.; Zhang, L.; Jiang, H.; Liao, M.; Zhang, L.; Liu, X., 2019. Mapping and characterizing displacements of active loess slopes along the upstream Yellow River with multi-temporal InSAR datasets. Science of The Total Environment, v. 674, 200-210. https://doi.org/10.1016/j.scitotenv.2019.04.140.

Singh, S., 2022. Forest fire emissions: a contribution to global climate change. Frontiers in Forests and Global Change, v. 5, 925480. https://doi.org/10.3389/ffgc.2022.925480.

Sinha, A.; Nikhil, S.; Ajin, R.S.; Homian Danumah, J.; Saha, S.; Costache, R.; Rajaneesh, A.; Sajinkumar, K.S.; Amrutha, K.; Johny, A.; Marzook, F.; Mammen, P.C.; Abdelrahman, K.; Fnais, M.S.; Abioui, M., 2023. Wildfire risk zone mapping in contrasting climatic conditions: An approach employing AHP and F-AHP models. Fire, v. 6 (2), 44. https://doi.org/10.3390/fire6020044.

Tabibian, S., 2022. Physical zoning of forest fire risk using fuzzy AHP and GIS methods (case study: Asalem). Physical Social Planning, v. 9 (2), 61-72. https://doi.org/10.30473/psp.2022.62345.2561.

Tomar, J.S.; Kranjčić, N.; Đurin, B.; Kanga, S.; Singh, S.K., 2021. Forest fire hazards vulnerability and risk assessment in Sirmaur district forest of Himachal Pradesh (India): A geospatial approach. ISPRS International Journal of Geo-Information, v. 10 (7), 447. https://doi.org/10.3390/ijgi10070447.

Tremea, A.; Gallo, J.; Silva, A.J.F., 2020. Análise espaço-temporal do desmatamento via sensoriamento remoto no projeto de assentamento Santa Júlia, sudoeste do estado do Pará. Revista Meio Ambiente e Sustentabilidade, v. 9 (19). https://doi.org/10.22292/mas.v9i19.895.

Vallejo-Villalta, I.; Rodríguez-Navas, E.; Márquez-Pérez, J., 2019. Mapping forest fire risk at a local scale - A case study in Andalusia (Spain). Environments, v. 6 (3), 30. https://doi.org/10.3390/environments6030030.

Vettorazzi, C.A.; Ferraz, S.F. B., 1998. Uso de sistemas de informações geográficas aplicados à prevenção e combate a incêndios em fragmentos florestais. Série Técnica IPEF, v. 12 (32), 111-115 (Accessed March 12, 2023) at:. https://www.bibliotecaflorestal. ufv.br:80/handle/ 123456789/14759.

Zhang, Z.; Yang, S.; Wang, G.; Wang, W.; Xia, H.; Sun, S.; Guo, F., 2022. Evaluation of geographically weighted logistic model and mixed effect model in forest fire prediction in northeast China. Frontiers in Forests and Global Change, v. 5, 1040408. https://doi.org/10.3389/ffgc.2022.1040408.

Downloads

Published

2025-03-13

How to Cite

Aires, L. S. da S., Angelini, L. P., & Danelichen, V. H. de M. (2025). Estimating the risk of wildfires in the municipality of Rio Verde, Goiás State, Central Brazil. Revista Brasileira De Ciências Ambientais, 60, e2006. https://doi.org/10.5327/Z2176-94782006

Similar Articles

You may also start an advanced similarity search for this article.