Bioprospecting of endophytic fungi isolated from Azadirachta indica (A. Juss) with the potential to produce hydrolytic enzymes and control the phytopathogen Macrophomina phaseolina

Authors

DOI:

https://doi.org/10.5327/Z2176-94781992

Keywords:

antagonism; biocontrol; biotechnology.

Abstract

Endophytic microorganisms are mostly fungi or bacteria that live inside plants without causing them harm. They establish an intimate mutualistic association, making plants more resistant to stressful environments while receiving nutrients and protection. Studies indicate a significant capacity of these organisms to produce extracellular hydrolytic enzymes such as amylases, lipases, and cellulases from secondary metabolites that inhibit the development of pathogens. This work aimed to bioprospect endophytic fungi isolated from the plant Azadirachta indica with the potential to produce hydrolytic enzymes and control the microorganism Macrophomina phaseolina. These fungi had been previously isolated from A. indica,stored in the mycotheque of the Agricultural Entomology Laboratory B09 of the Don Bosco Catholic University, and molecularly identified. For enzyme production, the isolates were inoculated in specific media for each enzyme: lipase, esterase, pectinase, amylase, and protease. Antagonism tests were conducted in paired cultures, evaluating antagonism indices. It was possible to identify the genera Colletotrichum, Diaporthe, Phyllosticta, Alternaria, Trichoderma, Phomopsis, and Preussia, besides one identified only at the class level Sordariomycetes. In terms of enzyme production, the isolates Preussia isomera (AI17B) and Alternaria sp. (AI30B) stood out for their high protease production and the diversity of enzymes produced, respectively. In the presence of M. phaseolina, only Alternaria sp. (AI30B) and Phyllosticta capitalensis (AI25B) demonstrated antagonistic activity. Based on the results obtained, the A. indica plant can serve as a host for endophytic fungi with biotechnological and biocontrol potential.

Downloads

Download data is not yet available.

References

Almeida, T.T.; Orlandelli, R.C.; Azevedo, J.L.; and Pamphile, J.A., 2015. Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) (Pontederiaceae) native to the Upper Paraná River Floodplain, Brazil. Genetics and Molecular Research, v. 14 (2), 4920-4931. https://doi.org/10.4238/2015.May.11.25

Almeida, T.T.; Ribeiro, M.A. dos S.; Polonio, J.C.; Garcia, F.P.; Nakamura, C.V.; Meurer, E.C.; Sarragiotto, M.H.; Baldoqui, D.C.; Azevedo, J.L.; Pamphile, J.A., 2017. Curvulin and Spirostaphylotrichins R and U from extracts produced by two endophytic Bipolaris Sp. associated to aquatic macrophytes with antileishmanial activity. Natural Product Research, v. 32 (23): 2783-2790. https://doi.org/10.1080/14786419.2017.1380011

Badalyan, S.M.; Garibyan, N.G.; Innocenti, G., 2002. Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture, 1000-1006 (Accessed April 20, 2023) at:. https://www.torrossa.com/en/catalog/preview/2210959

Bhadra, F.; Gupta, A.; Vasundhara, M.; Reddy, M.S., 2022. Endophytic fungi: a potential source of industrial enzyme producers. 3 Biotech, v. 12 (4), 86. https://doi.org/10.1007/s13205-022-03145-y

Boro, M.; Sannyasi, S.; Chettri, D.; Verma, A.K., 2022. Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Archives of Microbiology, v. 204 (11), 666. https://doi.org/10.1007/s00203-022-03279-w

Campanile, G.; Ruscelli, A.; Luisi, N., 2007. Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, v. 117, 237-246. https://doi.org/10.1007/s10658-006-9089-1

Chatterjee, S.; Ghosh, R.; Mandal, N.C., 2019. Production of bioactive compounds with bactericidal and antioxidant potential by endophytic fungus Alternaria alternata AE1 isolated from Azadirachta indica A. Juss. PLoS ONE, v. 14 (4), e0214744. https://doi.org/10.1371/journal.pone.0214744

Damavandi, M.S.; Shojaei, H.; Esfahani, B.N., 2023. The anticancer and antibacterial potential of bioactive secondary metabolites derived from bacterial endophytes in association with Artemisia absinthium. Scientific Reports, v. 13 (1), 18473. https://doi.org/10.1038/s41598-023-45910-w

De Bary, A., 1866. Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. v. 2. - Hofmeister's Handbook of Physiological Botany, Leipzig.

Fontana, D.C.; de Paula, S.; Torres, A.G.; de Souza, V.H.M.; Pascholati, S.F.; Schmidt, D.; Dourado Neto, D., 2021. Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens, v. 10 (5), 570. https://doi.org/10.3390/pathogens10050570

Fungaro, M.H.P.; Maccheroni Junior; W., 2002. Melhoramento genético para produção de enzimas aplicadas à Indústria de Alimentos. In: Melo, I.S.; Valadares-Inglis, M. C.; Nass, L. L. and Valois, A.C.C. (Eds.), Recursos Genéticos e Melhoramento-Microrganismo. Embrapa Meio Ambiente, Jaguariúna, pp. 426-453.

Hankin, L.; Anagnostakis, S.L., 1975. The use of solid media for detection of enzyme production by fungi. Mycologia, v. 67 (3), 597-607. https://doi.org/10.1080/00275514.1975.12019782

Imbeloni, T.G.P.; Coutinho, H.S.; Mussi-Dias, V.; E Freire, M.G.M., 2015. Antibiose entre o fungo endofítico Alternaria Sp. e fungos fitopatogênicos. Biológicas & Saúde, v. 5 (18). https://doi.org/10.25242/88685182015758

Kadam, S.S.; Kanase, S.S., 2022. Exploration of endophytes from Azadirachta indica for antifungal activity. Journal of Plant Science Research, v. 38 (2). https://doi.org/10.32381/JPSR.2022.38.02.22

Kandasamy, G.D.; Kathirvel, P., 2023. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications–A review. Microbiological Research, v. 266, 127256. https://doi.org/10.1016/j.micres.2022.127256

Khan, A.L.; Al-Harrasi, A.; Al-Rawahi, A.; Al-Farsi, Z.; Al-Mamari, A.; Waqas, M.; Asaf, S.; Elyassi, A.; Mabood, F.; Shin, J.-H.; Lee, I.-J., 2016. Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS ONE, v. 11 (6), e0158207. https://doi.org/10.1371/journal.pone.0158207

Keshri, P.K.; Rai, N.; Verma, A.; Kamble, S.C.; Barik, S.; Mishra, P.; Singh, S.K.; Salvi, P.; Gautam, V., 2021. Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycological Progress, v. 20 (5), 577-594. https://doi.org/10.1007/s11557-021-01695-8

Kharwar, R.N.; Sharma, V.K.; Mishra, A.; Kumar, J.; Singh, D.K.; Verma, S.K.; Gond, S.K.; Kumar, A.; Kaushik, N.; Revuru, B.; Kusari, S., 2020. Harnessing the phytotherapeutic treasure troves of the ancient medicinal plant Azadirachta indica (Neem) and associated endophytic microorganisms. Planta medica, v. 86 (13/14), 906-940. https://doi.org/10.1055/a-1107-9370

Lateef, A.A.; Garuba, T.; Sa’ad, G.; Olesin, M.; Eperetun, G.G.; Tiamiyu, B.B., 2019. Isolation and molecular identification of dominant fungal endophytes from green leaves of physic nut (Jatropha curcas) from unilorin plantation, Ilorin, Nigeria. Sri Lankan Journal of Biology, v. 4 (1), 1-13. https://doi.org/10.4038/sljb.v4i1.33

Liang, X.; Fu, Y.; Liu, H., 2015. Isolation and characterization of enzyme-producing bacteria of the silkworm larval gut in bioregenerative life support system. Acta Astronautica, v. 116, 247-253. https://doi.org/10.1016/j.actaastro.2015.07.010

Marquez, N.; Giachero, M.L.; Declerck, S.; Ducasse, D.A., 2021. Macrophomina phaseolina: general characteristics of pathogenicity and methods of control. Frontiers in Plant Science, v. 12, 634397. https://doi.org/10.3389/fpls.2021.634397

Mapperson, R.R.; Kotiw, M.; Davis, R.A.; Dearnaley, J.D., 2014. The diversity and antimicrobial activity of Preussia sp. endophytes isolated from Australian dry rainforests. Current microbiology, v. 68, 30-37. https://doi.org/10.1007/s00284-013-0415-5

Mengistu, A.; Arelli, P.A.; Bond, J.P.; Shannon, G.J.; Wrather, A.J.; Rupe, J.B.; Chen, P.; Little, C.R.; Canaday, C.H.; Newman, M.A.; Pantalone, V.R., 2011. Evaluation of soybean genotypes for resistance to charcoal rot. Plant Health Progress, v. 12 (1), 6. https://doi.org/10.1094/PHP-2010-0926-01-RS

Nthuku, B.M.; Kahariri, E.W.; Kinyua, J.K.; Nyaboga, E.N., 2023. Fungal endophytes of moringa (Moringa oleifera L.), neem (Azadirachta indica) and lavender (Lavandula angustifolia) and their biological control of fusarium wilt of banana. Microbiology Research, v. 14 (4), 2113-2132. https://doi.org/10.3390/microbiolres14040143

Ododa, K.O.; Githae, E.; Muraya, M., 2023. Efficacy of endophytic fungi isolated from Azadirachta indica roots against Alternaria causing early blight of tomato. Jurnal Online PERTANIAN TROPIK, v. 10 (2), 17-31. https://doi.org/10.32734/jpt.v10i2.11545

Oliveira, G.F.; Silva, M.R.; Hirata, D.B., 2022. Production of new lipase from Preussia africana and partial characterization. Preparative Biochemistry & Biotechnology, v. 52 (8), 942-949. https://doi.org/10.1080/10826068.2021.2012684

Orlandelli, R.C.; Specian, V.; Felber, A.C.; Pamphile, J.A., 2012. Enzimas de interesse industrial: produção por fungos e aplicações. SaBios-Revista de Saúde e Biologia, v. 7 (3), 97-109. ISSN:1980-0002

Pirttilä, A.M.; Parast Tabas, H.M.; Baruah, N.; Koskimäki, J.J., 2021. Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms, v. 9 (4), 817. https://doi.org/10.3390/microorganisms9040817

R Development Core Team, 2010. R: A language and environment for statistical computing.

Raimi, A.; Adeleke, R., 2021. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Archives of Microbiology, v. 203 (5), 1917-1942. https://doi.org/10.1007/s00203-021-02256-z

Rajput, K.; Chanyal, S.; Agrawal, P.K., 2016. Optimization of protease production by endophytic fungus, Alternaria alternata isolated from gymnosperm tree-Cupressus torulosa D Don. World Journal of Pharmacy and Pharmaceutical Sciences, v. 6 (7), 1034-1054. https://doi.org/10.20959/wjpps20167-7137

Robl, D.; Delabona, P.; Mergel, C.; Rojas, J.D.; Costa, P.; Pimentel, I.; Vicente, V.; Pradella, J.G.; Padilla, G., 2013. The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnology, v. 13 (1), 1-12. https://doi.org/10.1186/1472-6750-13-94

Saitou, N.; Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, v. 4 (4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Santos, G.B. de L.; Silva, J.M.; Sobrinho, R.R.; Nascimento, A.R.S.; Montaldo, Y.C.; Silva, R.M.S.; Santos, T.M.C.; Caetano, L.C., 2021. Prospecção química e atividade antagônica in vitro do endófito Phomopsis sp. contra fungos fitopatogênicos. Journal of Environmental Analysis and Progress, v. 6 (3), 167-173. https://doi.org/10.24221/jeap.6.3.2021.3376.167-173

Seddouk, L.; Jamai, L.; Tazi, K.; Ettayebi, M.; Alaoui-Mhamdi, M.; Aleya, L.; Janati-Idrissi, A., 2022. Isolation and characterization of a mesophilic cellulolytic endophyte Preussia africana from Juniperus oxycedrus. Environmental Science and Pollution Research, v. 29 (30), 45589-45600. https://doi.org/10.1007/s11356-022-19151-9

Sharma, A.; Malhotra, B.; Kharkwal, H.; Kulkarni, G.T.; Kaushik, N., 2020. Therapeutic agents from endophytes harbored in Asian medicinal plants. Phytochemistry Reviews, v. 19, 691-720. https://doi.org/10.1007/s11101-020-09683-8

Sierra, G., 1957. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek, v. 23, 15-22. https://doi.org/10.1007/BF02545855

Silva, M.C.S.; Polonio, J.C.; Quecine, M.C.; de Almeida, T.T.; Bogas, A.C.; Pamphile, J.A.; Pereira, J.O.; Astolfi-Filho, S.; Azevedo, J.L., 2016. Endophytic cultivable bacterial community obtained from the Paullinia cupana seed in Amazonas and Bahia regions and its antagonistic effects against Colletotrichum gloeosporioides. Microbial Pathogenesis, v. 98, 16-22. https://doi.org/10.1016/j.micpath.2016.06.023

Sopalun, K.; Iamtham, S., 2020. Isolation and screening of extracellular enzymatic activity of endophytic fungi isolated from Thai orchids. South African Journal of Botany, v. 134, 273-279. https://doi.org/10.1016/j.sajb.2020.02.005

Tamura, K.; Stecher, G.; Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, v. 38 (7), 3022-3027. https://doi.org/10.1093/molbev/msab120

Taware, A.S.; More, Y.W.; Ghag, S.V.; Rajurkar, S.K., 2017. Screening of endophytic fungi isolated from Azadirachta indica A. Juss. for production of enzyme. Bioscience Discovery, v. 8 (4), 688-694. ISSN-2348-7143

Tejesvi, M.V.; Mahesh, B.; Nalini, M.S.; Prakash, H.S.; Kini, K.R.; Subbiah, V.; Shetty, H.S., 2006. Fungal endophyte assemblages from ethnopharmaceutically important medicinal trees. Canadian Journal of Microbiology, v. 52 (5), 427-435. https://doi.org/10.1139/w05-143

Thompson, J.D.; Higgins, D.G.; Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, v. 22 (22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673

Vahobovna, M.Z.; Dildora, S.; Olimjonova Sadokat Gulomjon's daughter, 2023. Biology and biotechnology of endophite microorganisms. World Bulletin of Public Health, v. 18, 115-117. ISSN: 2749-3644

White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications, v. 18 (1), 315-322.

Wikee, S.; Chomnunti, P.; Kanghae, A.; Chukeatirote, E.; Lumyong, S.; Faulds, C., 2017. Lignocellulolytic capability of endophytic Phyllostica sp. Journal of Bacteriology and Mycology, v. 4 (2), d1047. https://doi.org/10.26420/jbacteriolmycol.2017.1047

Wu, S.H.; Chen, Y.W.; Shao, S.C.; Wang, L.D.; Li, Z.Y.; Yang, L.Y.; Li, S.L.; Huang, R., 2008. Ten-membered lactones from Phomopsis Sp.; an endophytic fungus of Azadirachta indica. Journal of Natural Products, v. 71 (4), 731-734. https://doi.org/10.1021/Np070624j

Ye, K.; Ai, H.L.; Liu, J.K., 2021. Identification and bioactivities of secondary metabolites derived from endophytic fungi isolated from ethnomedicinal plants of Tujia in Hubei Province: a review. Natural Products and Bioprospecting, v. 11, 185-205. https://doi.org/10.1007/s13659-020-00295-5

Zaferanloo, B.; Quang, T.D.; Daumoo, S.; Ghorbani, M.M.; Mahon, P.J.; Palombo, E.A, 2014. Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant. World Journal of Microbiology and Biotechnology, v. 30, 1755-1762. https://doi.org/10.1007/s11274-014-1598-z

Downloads

Published

2024-08-29

How to Cite

Elias, H. de O., Almeida, T. T. de, Freitas, G. F. de, Ferrandin, G. J., Petucco, D. de C., Loosli, A. W. M., Motti, P. R., & Carvalho, C. M. E. (2024). Bioprospecting of endophytic fungi isolated from Azadirachta indica (A. Juss) with the potential to produce hydrolytic enzymes and control the phytopathogen Macrophomina phaseolina. Revista Brasileira De Ciências Ambientais, 59, e1992. https://doi.org/10.5327/Z2176-94781992

Issue

Section

Especial Section: Bioprocesses and Sustainability