Agricultural sustainability: boinputs from bacteria as alternatives to improve the physiological and morphological development of Urochloa decumbens cv. Basilisk
DOI:
https://doi.org/10.5327/Z2176-94781980Keywords:
bacterial consortia; microorganism-plant interaction; degraded pastures.Abstract
Microorganisms play a crucial role when they are mutually associated with plants and can be considered a new sustainable tool for protecting and promoting pasture growth. The aim of this study was to bioprospect a microbial consortium with the ability to promote the growth and development of U. decumbens cv. Basilisk pastures, based on the hypothesis that microbial consortia may have similar potential to chemical fertilization. Therefore, five microbial consortia were selected (MIX 1; 2; 3; 4 and 5), previously characterized taxonomically and biotechnologically. In order to achieve the objectives, 7 treatments were carried out, 5 of which were with MIX's, one treatment with chemical fertilization and a control treatment without co-inoculation and without chemical fertilization. It was possible to observe that, in general, the microbial consortia had the potential to increase pasture growth in terms of chlorophyll content, number of leaves, number of tillers, root length, green mass and root dry mass more than the control treatment, and the same potential as the chemical fertilizer treatment for these characteristics. Specifically, MIX 1, made up of the bacteria Kleibsiela sp., Rhizobium sp. and Sinomonas sp., showed a high potential for increase, surpassing the treatment with chemical fertilization, especially in the variables root length, green and dry mass. Thus, it can be suggested that microbial consortia could become an ecologically, socially and economically viable alternative for maintaining pastures.
Downloads
References
Abdelaal, K.; Alkahtani, M.; Attia, K.; Hafez, Y.; Király, L.; Künstler, A., 2021. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology (Basel), v.10, (6), 520. https://doi.org/10.3390/biology10060520
Agler, T.M.; Ruhe, J.; Kroll, S.; Morhenn, C.; Kim, S.T.; Weigel, D.; Kemen, E.M., 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, v. 14, (1), e1002352. https://doi.org/10.1371/journal.pbio. 1002352
Azevedo, J.L.; Maccheroni, M.J.R.; Pereira, J.O.; Araújo W.L., 2000. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, v. 3, (1). https://doi.org/10.2225/vol3-issue1-fulltext-4
Baldwin, T.T.; Zitomer, N.C.; Mitchell, T.R.; Zimeri, A.M.; Bacon, C.W.; Riley, R.T.; Glenn, A.E., 2014. Maize seedling blight induced by Fusarium verticillioides: Accumulation of fumonisin B1 in leaves without colonization of the leaves. Journal of Agricultural and Food Chemistry, v. 62, (9), 2118-2125. https://doi.org/10.1021/jf5001106
Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.P., 2013. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil, v. 378, 1-33. https://doi.org/10.1007/s11104-013-1956-x
Batista, B.D.; Lacava, P.T.; Ferrari, A.; Teixeira-Silva, N.S.; Bonatelli, M.L.; Tsui, S., Quecine, M.C., 2018. Screening of tropically derived, multi-trait plant growth- promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiological Research, v. 206, 33-42. https://doi.org/10.1016/j.micres.2018.09.007
Berça, A.S.; Cardoso, A.D.S.; Longhini, V.Z.; Tedeschi, L.O.; Boddey, R.M.; Reis, R.A.; Ruggier, I.A.C., 2021. Protein and carbohydrate fractions in warm-season pastures: effects of nitrogen management strategies. Agronomy, v. 11, (5), 847. https://doi.org/10.3390/agronomia11050847
Bianco, S.; Brendolan, R.A.; Alves, P.L.C.A.; Pitelli, R.A., 2000. Estimativa de área foliar de plantas daninhas: Brachiaria decumbens Stapf. e Brachiaria brizantha (Hochst.) Stapf. R. Planta Daninha, v. 18, (1), 79-83. https://doi.org/10.1590/S0100-83582000000100008
Bono, J.A.M.; Dos Santos Rufino, R.; Gonçalves, R.C., 2019. Fertilizantes nitrogenados em cobertura para pastagem marandu (Brachiaria brizantha) no Mato Grosso do Sul. Uniciências, v. 23, (2), 127-132. https://doi.org/10.17921/1415-5141.2019v23n2p127-132
Cavalcanti, F.J.A., 2008. Recomendações de adubação para o Estado de Pernambuco. 3. ed. Instituto Agronômico de Pernambuco, Recife, 212 p.
Cheruiyot, D.; Midega, C.A.O.; Ueckermann, E.A.; Van den berg, J.; Pickett, J.A.; Khan, Z.R., 2018. Genotypic response of brachiaria (Urochloa spp.) to spider mite (Oligonychus trichardti) (Acari: Tetranychidae) and adaptability to different environments. Field Crops Research, v. 225, 163-169. https://doi.org/10.1016/j.fcr.2018.06.011
Corato, U.; Viola, E.; Keswani, C.; Minkina, T., 2024. Impact of the sustainable agricultural practices for governing soil health from the perspective of a rising agri-based circular bioeconomy. Applied Soil Ecology, v. 194, 105199. https://doi.org/10.1016/j.apsoil.2023.105199
Cruz, C.; Cardoso, P.; Santos, J.; Matos, D.; Sá, C.; Figueira, E., 2023. Application of plant growth-promoting bacteria from Cape Verde to increase maize tolerance to salinity. Antioxidants,12, (2), 488. https://doi.org/ 10.3390/antiox12020488
Da Costa, S.; Cardoso, A.; Castro, G.; Júnior, D.; Silva, T.; Silva, G., 2022. Co-inoculation of Trichoderma asperellum with Bacillus subtilis to promote growth and nutrient absorption in Marandu grass. Applied and Environmental Soil Science, v. 2022, 3228594. https://doi.org/10.1155/2022/3228594
Delevatti, L.M.; Romanzini, E.P.; Koscheck, J.F.W.; De Araujo, T.L.D.R.; Renesto, D.M.; Ferrari, A.C.; Reis, R.A., 2019. Forage management intensification and supplementation strategy: intake andmetabolic parameters on beef cattle production. Animal Feed Science and Technology, v. 247, 74-82. http://doi.org/10.1016/j.anifeedsci.2018.11.004
Dias, A.S., Santos, C.C., 2022. Bactérias promotoras de crescimento de plantas: conceitos e potencial de uso. Pantanal Editora, Mato Grosso, 98 p. https://doi.org/10.46420/9786581460631
Dos-Santos, C.M.; Nascimento, W.B.A.; Do Nascimento, B.P.; Schwab, S.; Baldani, J.I.; Vidal, M.S., 2021. Temporal assessment of root and shoot colonization of elephant grass (Pennisetum purpureum Schum.) host seedlings by Gluconacetobacter diazotrophicus strain LP343. Microbiological Research, v. 24, 126651. https://doi.org/10.1016/j.micres.2020.126651
Empresa Brasileira de Pesquisa Agropecuária (Embrapa), 2006. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2. ed. Embrapa, Rio de Janeiro, 306 p.
Feltran-Barbieri, R.; Ozment, S.; Matsumoto, M.; Gray, E.; Belote, T.; Oliveira, M., 2021. Infraestrutura natural para água na região metropolitana da grande Vitória. WRI Brasil, São Paulo.
Figueredo, E.F.; Cruz, T.A.D.; Almeida, J.R.; Batista, B.D.; Marcon, J.; Andrade, P.A.M.; Hayashibara, C.A.A.; Rosa, M.S.; Azevedo, J.L.; Quecine, M.C., 2023. The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiological Research, v. 266, 127218. https://doi:10.1016/j.micres.2022.127218
Guimarães, S.G.; Rondina, A.B.L.; Junior, A.G.O.; Jank, L.; Nogueira, M.A.; Hungria, M., 2023. Inoculation with plant growth-promoting bacteria improves the sustainability of tropical pastures with Megathyrsus maximus. Agronomy, v. 13, (3), 734. https://doi.org/10.3390/agronomy13030734
Hardoin, P.R.; Van overbeek, L.S.; Berg, G., Pirtillä, A.M.; Compant, S.; Campisano, A.; Doring, M.; Sessitsch, A., 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, v. 79, (3), 293-320. https://doi.org/10.1128/mmbr.00050-14
Hartman, K.; Heijden, M.G.; Roussely-Provent, V.; Walser, J.C.; Schlaeppi, K., 2017. Composition and function of the root microbiome of a legume plant. Microbiome, v. 5, 2. https://doi.org/10.1186/s40168-016-0220-z
Heinrichs, R.; Meirelles, G.C.; De Melo Santos, L.F.; Lira, M.V.S.; Lapaz, A.M.; Nogueira, M.A.; Bonini, C.S.B.; Filho, C.V.S.; Moreira, A., 2020. Azospirillum inoculation of “Marandu” palisade grass seeds: effects on forage production and nutritional status. Semina: Ciências Agrárias, v. 41, (2),465-478. http://doi.org/ 10.5433/1679-0359.2020v41n2p465
Hungria, M.; Nogueira, M.A.; Araujo, R.S., 2016. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environmentfriendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems & Environment, v. 221, 125-131. https://doi.org/10.1016/j.agee.2016.01.024
Hungria, M.; Rondina, A.B.L.; Nunes, A.L.P.; Araújo, R.S.; Nogueira, M.A., 2021. Correction to: seed and leaf-spray inoculation of PGPR in brachiarias (Urochloa spp.) as an economic and environmental opportunity to improve plant growth, forage yield and nutrient status. Plant and Soil, v. 463, 171-186. https://doi.org/10.1007/s11104-021-04908-x
Itzigsohn, R.; Okon, Y.; Yonatan, R.; Burdman, S.; Zaady, E.; Perevolotsky, A., 2000. Plant-Growth promotion in natural pastures by inoculation with Azospirillum brasilense under suboptimal growth conditions. Arid Soil Research and Rehabilitation, v. 14, (2), 151-158. https://doi.org/10.1080/089030600263076
Khalifa, A.; Alsowayeh, N., 2023. Whole-genome sequence insight into the plant-growth-promoting bacterium priestia filamentosa strain AZC66 obtained from Zygophyllum coccineum Rhizosphere. Plants (Basel), v. 12, (10), 1944. https://doi.org/10.3390/plants12101944
Kuklinsky-Sobral, J.; Araújo, W.L.; Mendes, R.; Geraldi, I. O.; Pizzirani-Kleiner, A. A.; Azevedo, J.L., 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, v. 6, (12), 1244-51 https://doi.org/10.1111/j.1462-2920.2004.00658.x
Lima, D.R.M.; Santos, I.B.; Oliveira, J.T.C.; Barbosa, J.G.; Diniz, W.P.S.; Farias, A.R.B.; Freire, F.J.; Kuklisnsky-Sobral, J., 2018. Tolerance of potentially diazotrophic bacteria to adverse environmental conditions and plant growth-promotion in sugarcane. Archives of Agronomy and Soil Science, v. 64, (11), 1534-1548. https://doi.org/10.1080/03650340.2018.1443212
Liu, Y.; Wirén, N. V., 2022. Integration of nutrient and water availabilities via auxin into the root developmental program. Current Opinion in Plant Biology. https://doi.org/10.1016/j.pbi.2021.102117
Mendes, R.; Kruijt, M.; de Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.; Piceno, M.Y.; De Santis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; Raaijmakers, J.M., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, v. 332, (6033), 1097-1100. http://doi.org/ 10.1126/science.1203980
Martins, C.; Mesquita, A.; Bandeira, L.; Cavalcante, F.; Ribeiro, G.; Martins, S., 2023. In vitro co-inoculation of rhizobacteria from the semi-arid aiming at their implementation as bio-inoculants. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 58, (1), 59-66. https://doi.org/10.5327/Z2176-94781481
Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A., 2016. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, v. 73, (1), 18-23. https://doi.org/10.1590/0103-9016-2015-0006
Nievas, F.; Bogino, P.; Nocelli, N.; Giordano, W., 2012. Genotypic analysis of isolated peanutnodulating rhizobial strains reveals differences among populations obtained from soils with different cropping histories. Applied Soil Ecology, v. 53, (1), 74-82. https://doi.org/10.1016/j.apsoil.2011.11.010
Oliveira, B.R.; Duarte, M.A.Q.; Zuffo, A.M.; Steifer, F.; Aguilera, J.G.; Dutra, A.F.; Neto, F.A.; Leite, M.R.L.; Silva, N.S.G.; Salcedo, E.P.; Aranibar, L.M.; Chura, R.M.M.; Alejo, R.C.; Contreras, W.C., 2024. Selection of forage grasses for cultivation under water-limited conditions using Manhattan distance and TOPSIS. PLoS ONE, v. 19, (1), e0292076. https://doi.org/10.1371/journal.pone.0292076
Oliveira, J.T.C.; Pereira, A.P.A.; Souza, A.J.; Kuklinsky-Sobral, J.; Freire, F.J.; Santos, M.V.F.; Lira, M.A., 2022. Inoculation with plant-growth promoting bacteria improves seed germination and initial development of Brachiaria decumbens. Anais da Academia Brasileira de Ciências, v. 94, (1), e20200124. http://doi.org/ 10.1590/0001-37652202220200124
Oliveira, J.T.C.; Silva, G.T.; Da Silva Diniz, W.P.; Figueredo, E.F.; Dos Santos, I.B.; Lima, D.R.M.; Quecine, M.C.; Kuklinsky-Sobral, J.; Freire, F.J., 2018. Diazotrophic bacteria isolated from Brachiaria spp.: genetic and physiological diversity. Ciencia e Investigación Agraria, v.45, (3), 277-289. https://doi.org/10.7764/rcia.v45i3.1949
Pandey, A.; Tripathi, A.; Srivastava, P.; Choudhary, K.K.; Dikshit, A., 2019. Plant growth-promoting microorganisms in sustainable agriculture. Journals & Books, 1-19. https://doi.org/10.1016/B978-0-12-817004-5.00001-4
Poudel, R.; Jumpponen, D.C.; Schlatter, T.C.; Paulitz, B.B; McSpadden Gardener, L.L.; Kinkel.; Garrett, K.A., 2016. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology, v. 106, (10), 1083-1096. https://doi.org/10.1094/PHYTO-02-16-0058-FI
Ramakrishna, W.; Yadav, R.; Li, K., 2019. Plant growth promoting bacteria in agriculture: two sides of a coin. Applied Soil Ecology, v. 138, 10-18. https://doi.org/10.1016/j.apsoil.2019.02.019
Rilling, J.I.; Acuñ,a J.J.; Nannipieri, P.; Cassan, F.; Maruyama, F.; Jorquera, M.A., 2019. Current opinion and perspectives on the methods for tracking and monitoring plant growth‒promoting bacteria. Soil Biology and Biochemistry, v. 130, 205-219. https://doi.org/10.1016/j.soilbio.2018.12.012
Roque, M.P.B.; Neto, J.A.F.; de Faria, A.L.L., 2022. Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil. Environment, Development and Sustainability, v. 24, (144). https://doi.org/10.1007/s10668-021-01501-1
Santana, S.R.A.; Voltolini, T.V.; Antunes, G.R.; Silva, V.M.; Simões, W.L.; Morgante, C.V.; Freitas, A.D.S.; Chaves, A.R.M.; Aidar, S.T.; Júnior, P.I.F., 2020. Inoculation of plant growth ‑ promoting bacteria attenuates the negative effects of drought on sorghum. Archives of Microbiology, v. 202, (5), 1015-1024. http://doi.org/10.1007/s00203-020-01810-5
Santos, T.; Deus, T.; Giongo, V.; Salviano, A.; Santana, M.; Silva, V., 2022. Selection of green manures to provide ecosystem services in a semi-arid environment. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 57, (3), 409-421. https://doi.org/10.5327/Z2176-94781268
Sammauria, R.; Kumawat, S.; Kumawat, P.; Singh, J.; Jatwa, T.K., 2020. Microbial inoculants: potential tool for sustainability of agricultural production systems. Archives of Microbiology, v. 202, (4), 677-693. https://doi.org/10.1007/s00203-019-01795-w
Suhaimi, D.; Sharif, S.; Normah, M.A.; Nadia, M.N.; Syahidah, H.W., 2017. Estimating relative feed value of local Brachiaria decumbens. Malaysian Journal of Veterinary Research, v. 8, (2), 78-82.
Trabelsi, A.; El Kaibe, M. A.; Abbassi, A.; Horchani, A.; Ghedira, L.C.; Ghedira, K., 2020. Phytochemical study and antibacterial and antibiotic modulation activity of punica granatum (pomegranate) leaves. Scientifica (Cairo), v. 2020, 8271203. https://doi.org/10.1155/2020/8271203
Trabelsi, D.; Mhamdi, R., 2013. Microbial Inoculants and their impact on the soil microbial communities: a review. BioMed Research International, v. 2013, 863240. https://doi.org/10.1155/2013/863240
Tripathi, J.; Singh, A.K.; Tiwari, P.; Menaka, Y. M., 2013. Comparative effectiveness of different isolates of Azospirillum on nitrogen fixation and yield and yield attributing characters of tomato in Chhattisgarh. African Journal of Microbiology Research, v. 7, (28), 3615-3620. https://doi.org/10.5897/AJMR2013.5575
van der Heijden, M.G.; Hartmann, M., 2016. Networking in the plant microbiome. PloS Biology, v. 14, (2), e1002378. https://10.1371/journal.pbio.1002378
Wanga, L.; Su, C.W.; Liu, J.; Dong, Y., 2024. Sustainable development or smoke?: the role of natural resources, renewable energy, and agricultural practices in China. Resources Policy, v. 88, 104512. https://doi.org/10.1016/j.resourpol.2023.104512
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais (RBCIAMB)
This work is licensed under a Creative Commons Attribution 4.0 International License.