Bioconversion of orange pomace using Hermetia illucens larvae: development and nutritional composition of the larvae

Authors

DOI:

https://doi.org/10.5327/Z2176-94781974

Keywords:

agroindustrial residue; larval biomass; alternative protein; BSFL; animal feed.

Abstract

Oranges, a popular fruit, generate large amounts of waste, with half discarded as pomace after juice extraction, contributing to 110–120 million tons of citrus waste annually, and posing environmental challenges, especially regarding soil and water pollution. Therefore, this study evaluates bioconversion using larvae of Hermetia illucens (BSFL) fed with orange pomace, analyzing the effectiveness of the process and the resulting larvae’s nutritional quality. Preliminary tests showed that pure orange pomace does not provide the necessary nutritional support for BSFL development. Thus, BSFL was fed with pomace supplemented with farinaceous at different concentrations: LA25 (25% pomace, 75% farinaceous residue), LA50 (50% pomace, 50% farinaceous residue), LA75 (75% pomace, 25% farinaceous residue), and LA0 (100% farinaceous residue). Larval performance, bioconversion development, and BSFL nutritional quality were evaluated. Results showed that BSFL can effectively convert orange pomace, utilize its nutrients, and reduce its pollutant potential. Overall, using only pure orange pomace did not support larval growth. However, increasing levels of farinaceous residue altered development, bioconversion parameters, and BSFL nutritional quality (p≤0.05). It was observed that 25% of the farinaceous residue (LA75) significantly improved BSFL’s overall performance (p≤0.05), also enhancing the valorization of this residue concerning all evaluated parameters.

Downloads

Download data is not yet available.

References

Adámková, A.; Mlček, J.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Hlobilová, V.; Juríková, T., 2020. Tenebrio molitor (Coleoptera: Tenebrionidae) - Optimization of rearing conditions to obtain desired nutritional values. Journal of Insect Science, v. 20, (5), 24. https://doi.org/10.1093/jisesa/ieaa100

Association of Official Analytical Chemists (AOAC), 2016. Official Methods of Analysis of AOAC International. 20. ed. AOAC International, Rockville, Maryland.

Bosch, G.; Oonincx, D.G.A.B.; Jordan, H.R.; Zhang, J.; Van Loon, J.J.A.; Van Huis, A.; Tomberlin, J.K., 2020. Standardisation of quantitative resource conversion studies with black soldier fly larvae. Journal of Insects as Food and Feed, v. 6, (2), 95-109. https://doi.org/10.3920/JIFF2019.0004

Cammack, J.A.; Tomberlin, J.K., 2017. The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects, v. 8, (2), 56. https://doi.org/10.3390/insects8020056

Chiam, Z.; Lee, J.T.E.; Tan, J.K.N.; Song, S.; Arora, S.; Tong, Y.W.; Tan, H T.W., 2021. Evaluating the potential of okara-derived black soldier fly larval frass as a soil amendment. Journal of Environmental Management, v. 286, 112163. https://doi.org/10.1016/j.jenvman.2021.112163

Cypriano, D.Z.; Da Silva, L.L.; Mariño, M.A.; Tasic, L., 2017. Orange biomass by-products. Revista Virtual de Química, v. 9, (1), 176-191. https://doi.org/10.21577/1984-6835.20170014

da Cruz, R.M.S.; da Silva, C.; da Silva, E.A.; Hegel, P.; Barão, C.E.; Cardozo-Filho, L., 2022. Composition and oxidative stability of oils extracted from Zophobas morio and Tenebrio molitor using pressurized n-propane. The Journal of Supercritical Fluids, v. 181, 105504. https://doi.org/10.1016/j.supflu.2021.105504

Dortmans, B.; Diener, S.; Bart, V.; Zurbrügg, C., 2017. Black soldier fly biowaste processing: a step-by-step guide. Eawag (Accessed September 24, 2023) at:. https://www.dora.lib4ri.ch/eawag /islandora/object/ eawag:15615

dos Santos, L.A.; Santos, A.F.F.; Valença, R.B.; Jucá, J.F.T.; Oliveira, C.R.M., 2018. Produção de biogás a partir de bagaço de laranja. Revista Geama, v. 4, (3), 22-27.

Ebeneezar, S.; Tejpal, C.S.; Jeena, N.S.; Summaya, R.; Chandrasekar, S.; Sayooj, P.; Vijayagopal, P., 2021. Nutritional evaluation, bioconversion performance and phylogenetic assessment of black soldier fly (Hermetia illucens, Linn. 1758) larvae valorized from food waste. Environmental Technology & Innovation, v. 23, 101783. https://doi.org/10.1016/j.eti.2021.101783

Hahn, T.; Roth, A.; Febel, E.; Fijalkowska, M.; Schmitt, E.; Arsiwalla, T.; Zibek, S., 2018. New methods for high‐accuracy insect chitin measurement. Journal of the Science of Food and Agriculture, v. 98, (13), 5069-5073. https://doi.org/10.1002/jsfa.9044

Jenkins, S.N.; Middleton, J.A.; Huang, Z.; Mickan, B.S.; Andersen, M.O.; Wheat, L.; Abbott, L.K., 2023. Combining frass and fatty acid co-products derived from Black soldier fly larvae farming shows potential as a slow release fertilizer. Science of the Total Environment, v. 899, 165371. https://doi.org/10.1016/j.scitotenv.2023.165371

Jeon, H.; Park, S.; Choi, J.; Jeong, G.; Lee, S.B.; Choi, Y.; Lee, S.J., 2011. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Current Microbiology, v. 62, 1390-1399. https://doi.org/10.1007/s00284-011-9874-8

Komilus, C.F.; Mufit, N.M.M., 2021. Dried acetes as growth promoter for guppy (Poecilia reticulata) nutrition. IOP Conference Series: Earth and Environmental Science, v. 919, (1), 012049. https://doi.org/10.1088/1755-1315/919/1/012049

Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B., 2019. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). Journal of Cleaner Production, v. 208, 211-219. https://doi.org/10.1016/j.jclepro.2018.10.017

Lee, C.M.; Lee, Y.S.; Seo, S.H.; Yoon, S.H.; Kim, S.J.; Hahn, B.S.; Koo, B.S., 2014. Screening and characterization of a novel cellulase gene from the gut microflora of Hermetia illucens using metagenomic library. Journal of Microbiology and Biotechnology, v. 24, (9), 1196-1206. https://doi.org/10.4014/jmb.1405.05001

Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Paengkoum, P., 2022. Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: a review. Insects, v. 13, (9), 831. https://doi.org/10.3390/insects13090831

Mahato, N.; Sharma, K.; Sinha, M.; Baral, E.R.; Koteswararao, R.; Dhyani, A.; Hwan Cho, M.; Cho, S., 2020. 'Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: a review. Journal of Advanced Research, v. 23, 61-82. https://doi.org/10.1016/j.jare.2020.01.007

Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R., 2016. Review of food composition data for edible insects. Food Chemistry, v. 193, 39-46. https://doi.org/10.1016/j.foodchem.2014.10.114

Parodi, A.; De Boer, I.J.; Gerrits, W.J.; Van Loon, J.J.; Heetkamp, M.J.; Van Schelt, J.; Van Zanten, H.H., 2020. Bioconversion efficiencies, greenhouse gas and ammonia emissions during black soldier fly rearing–A mass balance approach. Journal of Cleaner Production, v. 271, 122488. https://doi.org/10.1016/j.jclepro.2020.122488

Singh, A.; Kumari, K., 2019. An inclusive approach for organic waste treatment and valorization using Black Soldier Fly larvae: A review. Journal of Environmental Management, v. 251, 109569. https://doi.org/10.1016/j.jenvman.2019.109569

Terfa, G.N., 2021. Role of black soldier fly (Hermetia illucens) larvae frass bio-fertilizer on vegetable growth and sustainable farming in Sub-Saharan Africa. Reviews in Agricultural Science, v. 9, 92-102. https://doi.org/10.7831/ras.9.0_92

Wang, Y.S.; Shelomi, M., 2017. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods, v. 6, (10), 91. https://doi.org/10.3390/foods6100091

Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N., He, R.; Li, Z., 2020. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles. Food Chemistry, v. 323, 126818. https://doi.org/10.1016/j.foodchem.2020.126818

Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M., 2018. Valorization of citrus processing waste: a review. Waste Management, v. 80, 252-273. https://doi.org/10.1016/j.wasman.2018.09.024

Downloads

Published

2024-06-19

How to Cite

Costa e Silva, D. da, Silva, R. M. da, Köhler, A., & Vargas, D. P. de. (2024). Bioconversion of orange pomace using Hermetia illucens larvae: development and nutritional composition of the larvae. Revista Brasileira De Ciências Ambientais, 59, e1974. https://doi.org/10.5327/Z2176-94781974

Issue

Section

Especial Section: Bioprocesses and Sustainability