Impact of operating cycle type on alginate-like exopolysaccharide and tryptophan production in aerobic granular sludge systems

Authors

DOI:

https://doi.org/10.5327/Z2176-94781921

Keywords:

bioresource recovery; high-added-value products; sequential batch reactors; wastewater treatment.

Abstract

As wastewater treatment advances, there is a growing need to remove pollutants and recover valuable resources. This study focuses on the optimization of the aerobic granular sludge process, exploring the impact of varying the anaerobic period on the production of bioresources, i.e., on the synthesis of extracellular polymeric substances (EPS), alginate-like exopolysaccharides (ALE — like exopolysaccharides), and tryptophan (TRP). To this end, two sequential batch reactors (SBRs) were used, R1 and R2, fed with acetic and propionic acid, respectively, and subjected to different durations of the anaerobic phase (100, 70, 35, and 0 min) in the total cycle time of 6 h. The results were similar regarding COD, N, and P removal. However, R2 showed greater nitrate accumulation. Statistical analyses highlighted significant variations in SPE concentrations in the different phases (p<0.05) in both systems. ALE production in R1 was highest in the initial phase, decreasing with the reduction of the anaerobic period. However, this trend was not observed in the R2 system (p≈0.13). Tryptophan production remained stable across all phases for both systems. The results reveal that the duration of the anaerobic period significantly influences bioresource production, emphasizing the importance of defining optimal operational conditions for efficient resource recovery in wastewater treatment.

Downloads

Download data is not yet available.

References

American Public Health Association (APHA), 2012. Standard Methods for the Examination of Water and Wastewater. 22nd ed. APHA, Washington D.C.

Bassin, J.P.; Kleerebezem, R.; Muyzer, G.; Rosado, A.S.; van Loosdrecht, M.C.M.; Dezotti, M., 2012. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors. Applied Microbiology and Biotechnology, v. 93, 1281-1294. https://doi.org/10.1007/s00253-011-3428-7

Barros, A.R.M.; Rollemberg, S.L.D.S.; De Carvalho, C.D.A.; Moura, I.H.H.; Firmino, P.I.M.; Santos, A.B., 2020. Effect of calcium addition on the formation and maintenance of aerobic granular sludge (AGS) in simultaneous fill/draw mode sequencing batch reactors (SBRs). Journal of Environmental Management, v. 255, 109850. https://doi.org/10.1016/j.jenvman.2019.109850

Campo, R.; Carretti, E.; Lubello, C.; Lotti, T. 2022. Recovery of structural extracellular polymeric substances (sEPS) from aerobic granular sludge: insights on biopolymers characterization and hydrogel properties for potential applications. Journal of Environmental Management, v. 324, 116247. https://doi.org/10.1016/j.jenvman.2022.116247

Carvalho, C.A.; Ferreira dos Santos, A.; Tavares Ferreira, T.J.; Sousa Aguiar Lira, V.N.; Mendes Barros, A.R.; Bezerra dos Santos, A., 2021. Resource recovery in aerobic granular sludge systems: is it feasible or still a long way to go? Chemosphere, v. 274, 129881. https://doi.org/10.1016/j.chemosphere.2021.129881

Carvalheira, M.; Oehmen, A.; Carvalho, G.; Eusébio, M.; Reis, M.A.M., 2014. The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms. Water Research, v. 66, 296-307. https://doi.org/10.1016/j.watres.2014.08.033

Chen, X.; Lee, Yu-Jen; Yuan, T.; Lei, Z.; Adachi, Y.; Zhang, Z.; Lin, Y.; Van Loosdrecht, M.C.M., 2022. A review on recovery of extracellular biopolymers from flocculent and granular activated sludges: cognition, key influencing factors, applications, and challenges. Bioresource Technology, v. 363, 127854. https://doi.org/10.1016/j.biortech.2022.127854

Cheng, W.; Ma, C.; Bao, R.; Yang, X.; Zhou, X.; Liu, Y.; Liu, Q.; Ruan, A.; Li, X., 2023. Effect of influent ammonia nitrogen concentration on the phosphorus removal process in the aerobic granular sludge reactor. Journal of Environmental Chemical Engineering, v. 11, 110476. https://doi.org/10.1016/j.jece.2023.110476

Corsino, S.F.; Capodici, M.; Torregrossa, M.; Viviani, G., 2016. Fate of aerobic granular sludge in the long-term: the role of SPEs on the clogging of granular sludge porosity. Journal of Environmental Management, v. 183, (Pt 3), 541-550. https://doi.org/10.1016/j.jenvman.2016.09.004

Cui, Y.-W.; Huang, J.-L.; Alam, F., 2021. Fast granulation of halophilic activated sludge treating low-strength organic saline wastewater via addition of divalent cations. Chemosphere, v. 264, 128396. https://doi.org/10.1016/j.chemosphere.2020.128396

da Silva, V.E.P.S.G.; Rollemberg, S.L.S.; Santos, A.B., 2021. Impact of feeding strategy on the performance and operational stability of aerobic granular sludge treating high-strength ammonium concentrations. Journal of Water Process Engineering, v. 44, 102378. https://doi.org/10.1016/j.jwpe.2021.102378

de Kreuk, M.K.; Kishida, N.; van Loosdrecht, M.C.M., 2007. Aerobic granular sludge - state of the art. Water Science and Technology, v. 55, 75-81. https://doi.org/10.2166/wst.2007.244

Deng, S.; Wang, L.; Su, H., 2016. Role and influence of extracellular polymeric substances on the preparation of aerobic granular sludge. Journal of Environmental Management, v. 173, 49-54. https://doi.org/10.1016/j.jenvman.2016.03.008

Felz, S.; Al-Zuhairy, S.; Aarstad, O.A.; van Loosdrecht, M.C.M.; Lin, Y.M., 2016. Extraction of Structural Extracellular Polymeric Substances from Aerobic Granular Sludge. JoVE, v. 115, e54534. https://doi.org/10.3791/54534

Feng, C.; Lotti, T.; Canziani, R.; Lin, Y.; Tagliabue, C.; Malpei, F., 2021. Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: a critical review. Science of The Total Environment, v. 753, 142051. https://doi.org/10.1016/j.scitotenv.2020.142051

Ferreira, T.J.T.; Rollemberg, S.L.S.; Barros, A.N.; Lima, J.P.M.; Santos, A.B., 2021. Integrated review of resource recovery on aerobic granular sludge systems: Possibilities and challenges for the application of the biorefinery concept. Journal of Environmental Management, v. 291, 112718. https://doi.org/10.1016/j.jenvman.2021.112718

Figueiredo Filho, D.B.; Silva Júnior, J.A., 2009. Desvendando os mistérios do coeficiente de correlação de Pearson (r). Revista Política Hoje, v. 18, (1), 115-146.

Frutuoso, F.K.A.; dos Santos, A.F.; França, L.L. da S.; Barros, A.R.M.; dos Santos, A.B., 2023. Influence of operating regime on resource recovery in aerobic granulation systems under osmotic stress. Bioresource Technology, v. 376, 128850. https://doi.org/10.1016/j.biortech.2023.128850

Gao, F.; Liu, X.; Chen, W.; Guo, W.; Chen, L.; Li, D., 2018. Hydroxyl radical pretreatment for low-viscosity sodium alginate production from brown seaweed. Algal Research, v. 34, 191-197. https://doi.org/10.1016/j.algal.2018.07.017

Guo, H.; Felz, S.; Lin, Y.; Van Lier, J.B.; De Kreuk, M., 2020. Structural extracellular polymeric substances determine the difference in digestibility between waste activated sludge and aerobic granules. Water Research, v. 181, 115924. https://doi.org/10.1016/j.watres.2020.115924

Hamza, R.A.; Sheng, Z.; Iorhemen, O.T.; Zaghloul, M.S.; Tay, J.H., 2018. Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater. Water Research, v. 147, 287-298. https://doi.org/10.1016/j.watres.2018.09.061

He, Q.; Song, Q.; Zhang, S.; Zhang, W.; Wang, H., 2018. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions. Chemical Engineering Journal, v. 331, 841-849. https://doi.org/10.1016/j.cej.2017.09.060

Karakas, I.; Sam, S.B.; Cetin, E.; Dulekgurgen, E.; Yilmaz, G., 2020. Resource recovery from an aerobic granular sludge process treating domestic wastewater. Journal of Water Process Engineering, v. 34, 101148. https://doi.org/10.1016/j.jwpe.2020.101148

Konosuke, M.S.; Mitsugi, Y.K., 1975. Method of preparing l-tryptophan. United States patent 3929573A. 1975 Dec. 30.

Lemaire, R.; Marcelino, M.; Yuan, Z., 2008. Achieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater. Biotechnology and Bioengineering, v 100, (6), 1228-1236. https://doi.org/10.1002/bit.21844

Li, J.; Hao, X.; Gan, W.; van Loosdrecht, M.C.M.; Wu, Y., 2022. Controlling factors and involved mechanisms on forming alginate like extracellular polymers in flocculent sludge. Chemical Engineering Journal, v. 439, 135792. https://doi.org/10.1016/j.cej.2022.135792

Lin, Y.; De Kreuk, M.; Van Loosdrecht, M.C.M.; Adin, A., 2010. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant. Water Research, v. 44, 3355-3364. https://doi.org/10.1016/j.watres.2010.03.019

Lin, Y.M.; Sharma, P.K.; van Loosdrecht, M.C.M., 2013. The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge. Water Research, v. 47, 57-65. https://doi.org/10.1016/j.watres.2012.09.017

Liu, L.; Gao, D.-W.; Zhang, M.; Fu, Y., 2010. Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR. Journal of Hazardous Materials, v. 181, 382-387. https://doi.org/10.1016/j.jhazmat.2010.05.021

Liu, S.; Zhou, M.; Daigger, G.T.; Huang, J.; Song, G., 2023. Granule formation mechanism, key influencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review. Journal of Environmental Management, v. 338, 117771. https://doi.org/10.1016/j.jenvman.2023.117771

Liu, X.; Pei, Q.; Han, H.; Yin, H.; Chen, M.; Guo, C.; Li, J.; Qiu, H., 2022. Functional analysis of extracellular polymeric substances (EPS) during the granulation of aerobic sludge: Relationship among EPS, granulation and nutrients removal. Environmental Research, v. 208, 112692. https://doi.org/10.1016/j.envres.2022.112692

Liu, X.; Yang, H.; Yang, K., 2023. Effect of different enrichment methods on the independent biological phosphorus removal performance after nitrogen removal using immobilized fillers. Biochemical Engineering Journal, v. 198, 109041. https://doi.org/10.1016/j.bej.2023.109041

Long, B.; Yang, C.; Pu, W.; Yang, J.; Jiang, G.; Dan, J.; Li, C.; Liu, F., 2014. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor. Bioresource Technology, v. 166, 57-63. https://doi.org/10.1016/j.biortech.2014.05.039

Luo, J.; Hao, T.; Wei, L.; Mackey, H.R.; Lin, Z.; Chen, G.-H., 2014. Impact of influent COD/N ratio on disintegration of aerobic granular sludge. Water Research, v. 62, 127-135. https://doi.org/10.1016/j.watres.2014.05.037

Meng, F.; Liu, D.; Pan, Y.; Xi, L.; Yang, D.; Huang, W., 2019. Enhanced amount and quality of alginate-like exopolysaccharides in aerobic granular sludge for the treatment of salty wastewater. BioResources, v. 14, (1), 139-165.

Motteran, F.; Pereira, E.L.; Campos, C.M.M., 2013. The behaviour of an anaerobic baffled reactor (ABR) as the first stage in the biological treatment of hog farming effluents. Brazilian Journal of Chemical Engineering, v. 30, (2), 299-310. https://doi.org/10.1590/S0104-66322013000200008

Murujew, O.; Whitton, R.; Kube, M.; Fan, L.; Roddick, F.; Jefferson, B.; Pidou, M., 2021. Recovery and reuse of alginate in an immobilized algae reactor. Environmental Technology, v. 42, 1521-1530. https://doi.org/10.1080/09593330.2019.1673827

Niu, H.; Li, R.; Liang, Q.; Qi, Q.; Li, Q.; Gu, P., 2019. Metabolic engineering for improving l -tryptophan production in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, v. 46, 55-65. https://doi.org/10.1007/s10295-018-2106-5

Peltre, C.; Gregorich, E.G.; Bruun, S.; Jensen, L.S.; Magid, J., 2017. Repeated application of organic waste affects soil organic matter composition: Evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil Biology and Biochemistry, v. 104, 117-127. https://doi.org/10.1016/j.soilbio.2016.10.016

Pronk, M.; Neu, T.R.; van Loosdrecht, M.C.M.; Lin, Y.M., 2017. The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by Defluviicoccus sp. Water Research, v. 122, 148-158. https://doi.org/10.1016/j.watres.2017.05.068

Rollemberg, S.L.S.; Oliveira, L.Q.; de Barros, A.N.; Firmino, P.I.M.; Santos, A.B., 2020a. Pilot-scale aerobic granular sludge in the treatment of municipal wastewater: Optimizations in the start-up, methodology of sludge discharge, and evaluation of resource recovery. Bioresource Technology, v. 311, 123467. https://doi.org/10.1016/j.biortech.2020.123467

Rollemberg, S.L.S.; dos Santos, A.F.; Ferreira, T.J.T.; Firmino, P.I.M.; dos Santos, A.B., 2020b. Evaluation of the production of alginate-like exopolysaccharides (ALE) and tryptophan in aerobic granular sludge systems. Bioprocess and Biosystems Engineering, v. 44, 259-270. https://doi.org/10.1007/s00449-020-02439-w

Santos, A.F.; Frutuoso, F.K.A.; Carvalho, C.A.; Lira, V.N.S.A.; Barros, A.R.M.; dos Santos, A.B., 2022. Carbon source affects the resource recovery in aerobic granular sludge systems treating wastewater. Bioresource Technology, v. 357, 127355. https://doi.org/10.1016/j.biortech.2022.127355

Sarvajith, M.; Nancharaiah, Y.V., 2023. Properties of alginate-like exopolymers recovered from flocculent and granular microbial sludges of different biological treatment systems treating real municipal wastewater. Separation And Purification Technology, v. 313, 123460. https://doi.org/10.1016/j.seppur.2023.123460

Sethi, S.; Gupta, R.; Bharshankh, A.; Sahu, R.; Biswas, R., 2023. Celebrating 50 years of microbial granulation technologies: from canonical wastewater management to bio-product recovery. Science of the Total Environment, v. 872, 162213. https://doi.org/10.1016/j.scitotenv.2023.162213

Schambeck, C.M.; Magnus, B.S.; de Souza, L.C.R.; Leite, W.R.M.; Derlon, N.; Guimarães, L.B.; da Costa, R.H.R., 2020. Biopolymers recovery: dynamics and characterization of alginate-like exopolymers in an aerobic granular sludge system treating municipal wastewater without sludge inoculum. Journal of Environmental Management, v. 263, 110394. https://doi.org/10.1016/j.jenvman.2020.110394

van Leeuwen, K.V.; de Vries, E.; Koop, S.; Roest, K., 2018. The Energy & Raw Materials Factory: Role and Potential Contribution to the Circular Economy of the Netherlands. Environmental Management, v. 61, (5), 786-795. https://doi.org/10.1007/s00267-018-0995-8

Wang, B.-B.; Chang, Q.; Peng, D.-C.; Hou, Y.-P.; Li, H.-J.; Pei, L.-Y., 2014. A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: Separation and characterization of exopolymers between floc level and microcolony level. Water Research, v. 64, 53-60. https://doi.org/10.1016/j.watres.2014.07.003

Watanabe, T.; Snell, E.E., 1972. Reversibility of the tryptophanase reaction: synthesis of tryptophan from indole, pyruvate, and ammonia. Proceedings of the National Academy of Sciences of the United States of America, v. 69, (5), 1086-1090. https://doi.org/10.1073/pnas.69.5.1086

Wu, L.; Peng, C.; Peng, Y.; Li, L.; Wang, S.; Ma, Y., 2012. Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift. Journal of Environmental Sciences, v. 24, 234-241. https://doi.org/10.1016/S1001-0742(11)60719-5

Yang, Y.-C.; Liu, X.; Wan, C.; Sun, S.; Lee, D.-J., 2014. Accelerated aerobic granulation using alternating feed loadings: Alginate-like exopolysaccharides. Bioresource Technology, v. 171, 360-366. https://doi.org/10.1016/j.biortech.2014.08.092

Zahra, S.A.; AbdullaH, N.; Iwamoto, K.; Yuzir, A.; Mohamad, S.E., 2022. Alginate-like exopolysaccharides in aerobic granular sludge: a review. Materials Today: Proceedings, v. 65, 3046-3053. https://doi.org/10.1016/j.matpr.2022.04.032

Zheng, T.; Li, P.; Wu, W.; Liu, J.; Shi, Z.; Guo, X.; & Liu, J., 2018. State of the art on granular sludge by using bibliometric analysis. Applied Microbiology and Biotechnology, v. 102, (8), 3453-3473. https://doi.org/10.1007/s00253-018-8844-5

Zeng, R.-G.; Shi, C.; Hao, L.-T.; Huang, A.; Yuan, T.; Zhang, N., 2023 A review of alginate-like extracellular polymers from excess sludge: extraction, characterization, and potential application. Journal of Water Process Engineering, v. 56, 104346. https://doi.org/10.1016/j.jwpe.2023.104346

Downloads

Published

2024-07-25

How to Cite

Frutuoso, F. K. A., Barros, A. N. de, Santos, A. F. dos, Barros, A. R. M., Rollemberg, S. L. de S., & Santos, A. B. dos. (2024). Impact of operating cycle type on alginate-like exopolysaccharide and tryptophan production in aerobic granular sludge systems. Revista Brasileira De Ciências Ambientais, 59, e1921. https://doi.org/10.5327/Z2176-94781921

Issue

Section

Especial Section: Bioprocesses and Sustainability