Revolutionizing green hydrogen production: the impact of ultrasonic fields

Authors

DOI:

https://doi.org/10.5327/Z2176-94781912

Keywords:

water electrolysis; ultrasonic waves; polarization; energy efficiency; environmental sustainability.

Abstract

This paper reviews the use of ultrasonic fields in alkaline electrolysis for green hydrogen production, indicating the benefits and challenges of this emerging technology. Applying ultrasound can significantly increase electrolysis efficiency by reducing overpotentials and optimizing mass transfer. Quantitative data in Table 1 show that integrating ultrasound can reduce ohmic resistance by up to 76% and increase hydrogen production efficiency by up to 28%. For instance, under optimized conditions, hydrogen production can be increased by 45%, with energy savings ranging from 10 to 25%. The review examines the impact of ultrasound on removing gas bubbles from electrode surfaces and evaluates the use of ultrasonic transducers in different experimental setups. The effectiveness of ultrasound at specific frequencies (20–100kHz) and adjustable intensities (10–1000W/cm²) is discussed in terms of improving mass transfer and reducing ohmic resistance. Despite the benefits, technical challenges such as selecting appropriate materials and precisely controlling operating conditions are highlighted. The paper suggests that future research should focus on integrating ultrasonic technologies into renewable energy systems, combining ultrasound with advanced techniques to optimize hydrogen electrolysis sustainably and cost-effectively.

Downloads

Download data is not yet available.

References

An, C.; Wang, T.; Wang, S.; Chen, X.; Han, X.; Wu, S.; Deng, Q.; Zhao, L.; Hu, N., 2023. Ultrasonic- assisted preparation of two-dimensional materials for electrocatalysts. Ultrasonics Sonochemistry. v. 98, 106503. https://doi.org/10.1016/j.ultsonch.2023.106503.

Angulo, A.; van der Linde, P.; Gardeniers, H.; Modestino, M.; Rivas, D.F., 2020. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule, v. 4 (3), 555-579. https://doi.org/10.1016/j.joule.2020.01.005.

Ayar, B.; Akın, M.B., 2023. Hydrogen production and storage methods. International Journal of Advanced Natural Sciences and Engineering Researches, v. 7 (4), 179-185. https://doi.org/10.59287/ijanser.647.

Ayers, K., 2019. The potential of proton exchange membrane-based electrolysis technology. Current Opinion in Electrochemistry, v. 18, 9-15. https://doi.org/10.1016/j.coelec.2019.08.008.

Bernäcker, C.I.; Rauscher, T.; Büttner, T.; Kieback, B.; Röntzsch, L., 2019. A powder metallurgy route to produce raney-nickel electrodes for alkaline water electrolysis. Journal of The Electrochemical Society, v. 166 (6), 357-363. https://doi.org/10.1149/2.0851904jes.

Brauns, J.; Turek, T., 2020. Alkaline water electrolysis powered by renewable energy: A review. Processes, v. 8 (2), 248. https://doi.org/10.3390/pr8020248.

Burton, N.A.; Padilla, R.V.; Rose, A.; Habibullah, H., 2021. Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renewable and Sustainable Energy Reviews, v. 135, 110255. https://doi.org/10.1016/j.rser.2020.110255.

Cataldo, F., 1992. Effects of ultrasound on the yield of hydrogen and chlorine during electrolysis of aqueous solutions of NaCl or HCl. Journal of Electroanalytical Chemistry, v. 332 (1-2), 325-331. https://doi.org/10.1016/0022-0728(92)80362-8.

Cho, K.M.; Deshmukh, P.R.; Shin, W.G., 2021. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis. Ultrasonics Sonochemistry, v. 80, 105796. https://doi.org/10.1016/j.ultsonch.2021.105796.

Cooper, C.; Booth, A.; Varley-Campbell, J.; Britten, N.; Garside, R., 2018. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Medical Research Methodology, v. 18 (85), 1-14. https://doi.org/10.1186/s12874-018-0545-3.

Darband, G.B.; Aliofkhazraei, M.; Shanmugam, S., 2019. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renewable and Sustainable Energy Reviews, v. 114, 109300. https://doi.org/10.1016/j.rser.2019.109300.

Dehane, A.; Merouani, S.; Chibani, A.; Hamdaoui, O., 2022. Clean hydrogen production by ultrasound (sonochemistry): The effect of noble gases. Current Research in Green and Sustainable Chemistry, v. 5, 100288. https://doi.org/10.1016/j.crgsc.2022.100288.

Dehane, A.; Merouani, S.; Hamdaoui, O., 2021. Theoretical investigation of the effect of ambient pressure on bubble sonochemistry: Special focus on hydrogen and reactive radicals production. Chemical Physics, v. 547, 111171. https://doi.org/10.1016/j.chemphys.2021.111171.

Dong, Y.; Li, G.; Wang, Y.; Song, J.; Yang, S.; Yu, H., 2022. Study on the effective discharge energy mechanism of vertical ultrasonic vibration assisted EDM processing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, v. 236 (4), 453-461. https://doi.org/10.1177/09544054211028527.

Dotan, H.; Landman, A.; Sheehan, S.W.; Malviya, K.D.; Shter, G.E.; Grave, D.A.; Arzi, Z.; Yehudai, N.; Halabi, M.; Gal, N.; Hadari, N.; Cohen, C.; Rothschild, A.; Grader, G.S., 2019. Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting. Nature Energy, v. 4 (9), 786-795. https://doi.org/10.1038/s41560-019-0462-7.

Duan, X.; Xiao, J.; Lin, W.; Wang, S.; Wen, J., 2024. Experimental and numerical investigation of the impact of operating conditions on water electrolysis with ultrasonic. International Journal of Hydrogen Energy, v. 49, 404-416. https://doi.org/10.1016/j.ijhydene.2023.08.066.

Ehrnst, Y.; Sherrell, P.C.; Rezk, A.R.; Yeo, L.Y., 2023. Acoustically-induced water frustration for enhanced hydrogen evolution reaction in neutral electrolytes. Advanced Energy Materials, v. 13 (7), 2203164, 1-8. https://doi.org/10.1002/aenm.202203164.

Ezzahra Chakik, F.; Kaddami, M.; Mikou, M., 2017. Effect of operating parameters on hydrogen production by electrolysis of water. International Journal of Hydrogen Energy, v. 42 (40), 25550-25557. https://doi.org/10.1016/j.ijhydene.2017.07.015.

Fang, Y.; Li, M.; Guo, X.; Duan, Z.; Safikhani, A., 2023. Pulse-reverse electrodeposition of Ni-Mo-S nanosheets for energy saving electrochemical hydrogen production assisted by urea oxidation. International Journal of Hydrogen Energy, v. 48 (50), 19087-19102. https://doi.org/10.1016/j.ijhydene.2023.02.010.

Foroughi, F.; Bernäcker, C.I.; Röntzsch, L.; Pollet, B.G., 2022. Understanding the effects of ultrasound (408 kHz) on the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on Raney-Ni in alkaline media. Ultrasonics Sonochemistry, v. 84, 105979. https://doi.org/10.1016/j.ultsonch.2022.105979.

Foroughi, F.; Lamb, J.J.; Burheim, O.S.; Pollet, B.G., 2021. Sonochemical and sonoelectrochemical production of energy materials. Catalysts, v. 11 (2), 284. https://doi.org/10.3390/catal11020284.

Fu, X.; Belwal, T.; Cravotto, G.; Luo, Z., 2020. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Ultrasonics Sonochemistry, v. 60, 104726. https://doi.org/10.1016/j.ultsonch.2019.104726.

Gogate, P.R., 2008. Cavitational reactors for process intensification of chemical processing applications: a critical review. Chemical Engineering and Processing: Process Intensification, v. 47 (4), 515-527. https://doi.org/10.1016/j.cep.2007.09.014.

Grigoriev, S.A.; Fateev, V.N.; Bessarabov, D.G.; Millet, P., 2020. Current status, research trends, and challenges in water electrolysis science and technology. International Journal of Hydrogen Energy, v. 45 (49), 26036-26058. https://doi.org/10.1016/j.ijhydene.2020.03.109.

Hauch, A.; Küngas, R.; Blennow, P.; Hansen, A.B.; Hansen, J.B.; Mathiesen, B.V.; Mogensen, M.B., 2020. Recent advances in solid oxide cell technology for electrolysis. Science, v. 370 (6513), eaba6118. https://doi.org/10.1126/science.aba6118.

Islam, M.H.; Burheim, O.S.; Pollet, B.G., 2019. Sonochemical and sonoelectrochemical production of hydrogen. Ultrasonics Sonochemistry, v. 51, 533-555. https://doi.org/10.1016/j.ultsonch.2018.08.024.

Islam, M.H.; Mehrabi, H.; Coridan, R.H.; Burheim, O.S.; Hihn, J.Y.; Pollet, B.G., 2021. The effects of power ultrasound (24 kHz) on the electrochemical reduction of CO2 on polycrystalline copper electrodes. Ultrasonics Sonochemistry, v. 72, 105401. https://doi.org/10.1016/j.ultsonch.2020.105401.

Kacem, S.B.; Elaoud, S.C.; Asensio, A.M.; Panizza, M.; Clematis, D., 2021. Electrochemical and sonoelectrochemical degradation of Allura Red and Erythrosine B dyes with Ti-PbO2 anode. Journal of Electroanalytical Chemistry, v. 889, 115212. https://doi.org/10.1016/j.jelechem.2021.115212.

Kerboua, K.; Hamdaoui, O., 2019. Energetic challenges and sonochemistry: A new alternative for hydrogen production? Current Opinion in Green and Sustainable Chemistry, v. 18, 84-89. https://doi.org/10.1016/j.cogsc.2019.03.005.

Kerboua, K.; Merabet, N.H., 2023. Sono-electrolysis performance based on indirect continuous sonication and membraneless alkaline electrolysis: Experiment, modelling and analysis. Ultrasonics Sonochemistry, v. 96, 106429. https://doi.org/10.1016/j.ultsonch.2023.106429.

Khan, M. A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J., 2018. Recent progresses in electrocatalysts for water electrolysis. Electrochemical Energy Reviews, v. 1, 483-530. https://doi.org/10.1007/s41918-018-0014-z.

Kobus, Z.; Krzywicka, M.; Starek-Wójcicka, A.; Sagan, A., 2022. Effect of the duty cycle of the ultrasonic processor on the efficiency of extraction of phenolic compounds from Sorbus intermedia. Scientific Reports, v. 12 (1), 8311. https://doi.org/10.1038/s41598-022-12244-y.

Kumar, S.S.; Himabindu, V., 2019. Hydrogen production by PEM water electrolysis – a review. Materials Science for Energy Technologies, v. 2 (3), 442-454. https://doi.org/10.1016/j.mset.2019.03.002.

Kumar, S.S.; Lim, H., 2022. An overview of water electrolysis technologies for green hydrogen production. Energy Reports, v. 8, 13793-13813. https://doi.org/10.1016/j.egyr.2022.10.127.

Lamy, C.; Millet, P., 2020. A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions. Journal of Power Sources, v. 447, 227350. https://doi.org/10.1016/j.jpowsour.2019.227350.

Lei, J.; Ma, H.; Qin, G.; Guo, Z.; Xia, P.; Hao, C., 2024. A comprehensive review on the power supply system of hydrogen production electrolyzers for future integrated energy systems. Energies, v. 17 (4), 935. https://doi.org/10.3390/en17040935.

Lei, L.; Zhang, J.; Yuan, Z.; Liu, J.; Ni, M.; Chen, F., 2019. Progress report on proton conducting solid oxide electrolysis cells. Advanced Functional Materials, v. 29 (37), 1903805. https://doi.org/10.1002/adfm.201903805.

Li, G.; Chen, F.; Bie, W.; Zhao, B.; Fu, Z.; Wang, X., 2021. Cavitation effect in ultrasonic-assisted electrolytic in-process dressing grinding of nanocomposite ceramics. Materials, v. 14 (19), 5611. https://doi.org/10.3390/ma14195611.

Li, S.-D.; Wang, C.-C.; Chen, C.-Y., 2009. Water electrolysis in the presence of an ultrasonic field. Electrochimica Acta, v. 54 (15), 3877-3883. https://doi.org/10.1016/j.electacta.2009.01.087.

Liu, L.; Ma, H.; Khan, M.; Hsiao, B.S., 2024. Recent advances and challenges in anion exchange membranes development/application for water electrolysis: a review. Membranes, v. 14 (4), 85. https://doi.org/10.3390/membranes14040085.

Mladenović, I.; Lamovec, J.; Vasiljević Radović, D.; Radojević, V.; Nikolić, N.D., 2022. Influence of intensity of ultrasound on morphology and hardness of copper coatings obtained by electrodeposition. Journal of Electrochemical Science and Engineering, v. 12 (4), 603-615. https://doi.org/10.5599/jese.1290.

McMurray, H.N., 1998. Hydrogen evolution and oxygen reduction at a titanium sonotrode. Chemical Communications (8), 887-888. https://doi.org/10.1039/A800801I.

Marouani, I.; Guesmi, T.; Alshammari, B.M.; Alqunun, K.; Alzamil, A.; Alturki, M.; Hadj Abdallah, H., 2023. Integration of renewable-energy-based green hydrogen into the energy future. Processes, v. 11 (9), 2685. https://doi.org/10.3390/pr11092685.

Merouani, S.; Hamdaoui, O., 2016. The size of active bubbles for the production of hydrogen in sonochemical reaction field. Ultrasonics Sonochemistry, v. 32, 320-327. https://doi.org/10.1016/j.ultsonch.2016.03.026.

Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M., 2015. Mechanism of the sonochemical production of hydrogen. International Journal of Hydrogen Energy, v. 40 (11), 4056-4064. https://doi.org/10.1016/j.ijhydene.2015.01.150.

Merabet, N.H.; Kerboua, K., 2024. Green hydrogen from sono-electrolysis: a coupled numerical and experimental study of the ultrasound assisted membraneless electrolysis of water supplied by PV. Fuel, v. 356, 129625. https://doi.org/10.1016/j.fuel.2023.129625.

Nechache, A.; Hody, S., 2021. Alternative and innovative solid oxide electrolysis cell materials: A short review. Renewable and Sustainable Energy Reviews, v. 149, 111322. https://doi.org/10.1016/j.rser.2021.111322.

Nikitenko, S.I.; Pflieger, R., 2017. Toward a new paradigm for sonochemistry: Short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions. Ultrasonics Sonochemistry, Part B, v. 35, 623-630. https://doi.org/10.1016/j.ultsonch.2016.02.003.

Nnabuife, S.G.; Ugbeh-Johnson, J.; Okeke, N.E.; Ogbonnaya, C., 2022. Present and projected developments in hydrogen production: A technological review. Carbon Capture Science & Technology, v. 3, 100042. https://doi.org/10.1016/j.ccst.2022.100042.

Oliveira, A.M.; Beswick, R.R.; Yan, Y., 2021. A green hydrogen economy for a renewable energy society. Current Opinion in Chemical Engineering, v. 33, 100701. https://doi.org/10.1016/j.coche.2021.100701.

Plesset, M.S.; Prosperetti, A., 1977. Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, v. 9, 145-185. https://doi.org/10.1146/annurev.fl.09.010177.001045.

Pollet, B.G.; Foroughi, F.; Faid, A.Y.; Emberson, D.R.; Islam, M.H., 2020. Does power ultrasound (26 kHz) affect the hydrogen evolution reaction (HER) on Pt polycrystalline electrode in a mild acidic electrolyte? Ultrasonics Sonochemistry, v. 69, 105238. https://doi.org/10.1016/j.ultsonch.2020.105238.

Pushkareva, I.V.; Pushkarev, A.S.; Grigoriev, S.A.; Modisha, P.; Bessarabov, D.G., 2020. Comparative study of anion exchange membranes for low-cost water electrolysis. International Journal of Hydrogen Energy, v. 45 (49), 26070-26079. https://doi.org/10.1016/j.ijhydene.2019.11.011.

Rashid, M.M.; Al Mesfer, M.K.; Naseem, H.; Danish, M., 2015. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology, v. 4 (3), 2249-8958. ISSN: 2249-8958

Ren, Q.; Kong, C.; Chen, Z.; Zhou, J.; Li, W.; Li, D.; Cui, Z.; Xue, Y.; Lu, Y., 2021. Ultrasonic assisted electrochemical degradation of malachite green in wastewater. Microchemical Journal, v. 164, 106059. https://doi.org/10.1016/j.microc.2021.106059.

Rezk, A.R.; Tan, J.K.; Yeo, L.Y., 2016. HYbriD resonant acoustics (HYDRA). Advanced Materials, v. 28 (10), 1970-1975. https://doi.org/10.1002/adma.201504861.

Salari, A.; Hakkaki-Fard, A.; Jalalidil, A., 2022. Hydrogen production performance of a photovoltaic thermal system coupled with a proton exchange membrane electrolysis cell. International Journal of Hydrogen Energy, v. 47 (7), 4472-4488. https://doi.org/10.1016/j.ijhydene.2021.11.100.

Salehmin, M.N.I.; Husaini, T.; Goh, J.; Sulong, A.B., 2022. High-pressure PEM water electrolyser: a review on challenges and mitigation strategies towards green and low-cost hydrogen production. Energy Conversion and Management, v. 268, 115985. https://doi.org/10.1016/j.enconman.2022.115985.

Sazali, N., 2020. Emerging technologies by hydrogen: a review. International Journal of Hydrogen Energy, v. 45 (38), 18753-18771. https://doi.org/10.1016/j.ijhydene.2020.05.021.

Sharifishourabi, M.; Dincer, I.; Mohany, A., 2024. Implementation of experimental techniques in ultrasound-driven hydrogen production: a comprehensive review. International Journal of Hydrogen Energy, v. 62, 1183-1204. https://doi.org/10.1016/j.ijhydene.2024.03.013.

Shen, Z.-Y.; Tsui, H.-P., 2021. An investigation of ultrasonic-assisted electrochemical machining of micro-hole array. Processes, v. 9 (9), 1615. https://doi.org/10.3390/pr9091615.

Song, Y.; Zhang, X.; Xie, K.; Wang, G.; Bao, X., 2019. High‐temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. Advanced Materials, v. 31 (50), 1902033. https://doi.org/10.1002/adma.201902033.

Stiber, S.; Balzer, H.; Wierhake, A.; Wirkert, F.J.; Roth, J.; Rost, U.; Brodmann, M.; Lee, J.K.; Bazylak, A.; Waiblinger, W.; Gago, A.S.; Friedrich, K.A., 2021. Porous transport layers for proton exchange membrane electrolysis under extreme conditions of current density, temperature, and pressure. Advanced Energy Materials, v. 11 (33), 2100630. https://doi.org/10.1002/aenm.202100630.

Su, H.; Sun, J.; Wang, C.; Wang, H., 2024. Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation. Ultrasonics Sonochemistry, v. 102, 106734. https://doi.org/10.1016/j.ultsonch.2023.106734.

Sutkar, V.S.; Gogate, P.R., 2009. Design aspects of sonochemical reactors: Techniques for understanding cavitational activity distribution and effect of operating parameters. Chemical Engineering Journal, v. 155 (1-2), 26-36. https://doi.org/10.1016/j.cej.2009.07.021.

Tam, B.; Babacan, O.; Kafizas, A.; Nelson, J., 2024. Comparing the net-energy balance of standalone photovoltaic-coupled electrolysis and photoelectrochemical hydrogen production. Energy & Environmental Science, v. 17 (5), 1677-1694. https://doi.org/10.1039/d3ee02814c.

Theerthagiri, J.; Madhavan, J.; Lee, S.J.; Choi, M.Y.; Ashokkumar, M.; Pollet, B.G., 2020. Sonoelectrochemistry for energy and environmental applications. Ultrasonics Sonochemistry, v. 63, 104960. https://doi.org/10.1016/j.ultsonch.2020.104960.

Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A.; Bhattacharyya, D., 2012. Analysis, Synthesis and Design of Chemical Processes. 4. ed. Practice Hall, Upper Saddle River, 1007 p.

Villagrán, C.; Banks, C.E.; Pitner, W.R.; Hardacre, C.; Compton, R.G., 2005. Electroreduction of N-methylphthalimide in room temperature ionic liquids under insonated and silent conditions. Ultrasonics Sonochemistry, v. 12 (6), 423-428. https://doi.org/10.1016/j.ultsonch.2004.08.001.

Vincent, I.; Choi, B.; Nakoji, M.; Ishizuka, M.; Tsutsumi, K.; Tsutsumi, A., 2018. Pulsed current water splitting electrochemical cycle for hydrogen production. International Journal of Hydrogen Energy, v. 43 (22), 10240-10248. https://doi.org/10.1016/j.ijhydene.2018.04.087.

Vincent, I.; Lee, E.-C.; Kim, H.-M., 2021. Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production. Scientific Reports, v. 11 (1), 293. https://doi.org/10.1038/s41598-020-80683-6.

Vostakola, M.F.; Ozcan, H.; El-Emam, R.S.; Horri, B.A., 2023. Recent advances in high-temperature steam electrolysis with solid oxide electrolysers for green hydrogen production. Energies, v. 16 (8), 3327. https://doi.org/10.3390/en16083327.

Wang, S.; Lu, A.; Zhong, C.-J., 2021a. Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, v. 8 (1), 4. https://doi.org/10.1186/s40580-021-00254-x.

Wang, Y.-H.; Zheng, S.; Yang, W.-M.; Zhou, R.-Y.; He, Q.-F.; Radjenovic, P.; Dong, J.-C.; Li, S.; Zheng, J.; Yang, Z.-L.; Attard, G.; Pan, F.; Tian, Z.-Q.; Li, J.-F., 2021b. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature, v. 600 (7887), 81-85. https://doi.org/10.1038/s41586-021-04068-z.

Wu, L.; An, L.; Jiao, D.; Xu, Y.; Zhang, G.; Jiao, K., 2022. Enhanced oxygen discharge with structured mesh channel in proton exchange membrane electrolysis cell. Applied Energy, v. 323, 119651. https://doi.org/10.1016/j.apenergy.2022.119651.

Zadeh, S.H., 2014. Hydrogen production via ultrasound-aided alkaline water electrolysis. Journal of Automation and Control Engineering, v. 2 (1). https://doi.org/10.12720/joace.2.1.103-109.

Zhang, Z.; Xing, X., 2020. Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell. International Journal of Hydrogen Energy, v. 45 (39), 20184-20193. https://doi.org/10.1016/j.ijhydene.2020.02.102.

Zignani, S.C.; Faro, M.L.; Carbone, A.; Italiano, C.; Trocino, S.; Monforte, G.; Aricò, A.S., 2022. Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell. Electrochimica Acta, v. 413, 140078. https://doi.org/10.1016/j.electacta.2022.140078.

Zore, U.K.; Yedire, S.G.; Pandi, N.; Manickam, S.; Sonawane, S.H., 2021. A review on recent advances in hydrogen energy, fuel cell, biofuel and fuel refining via ultrasound process intensification. Ultrasonics Sonochemistry, v. 73, 105536. https://doi.org/10.1016/j.ultsonch.2021.105536.

Downloads

Published

2024-09-11

How to Cite

De Menezes, C. M. B., Sobral, D. de M., Dos Santos, L. B., Benachour, M., & Dos Santos, V. A. (2024). Revolutionizing green hydrogen production: the impact of ultrasonic fields. Revista Brasileira De Ciências Ambientais, 59, e1912. https://doi.org/10.5327/Z2176-94781912

More articles by the same author(s)