Sustainable valorization of Moringa oleifera Lam. co-products and zoo waste

Authors

DOI:

https://doi.org/10.5327/Z2176-94781816

Keywords:

tapir; vermicomposting; waste mitigation.

Abstract

Moringa oleifera (moringa) stands out as a promising plant in several segments, being produced worldwide. However, its co-products, particularly valves and seed husks, which represent more than 70% of its fruit, remain underutilized. Therefore, this work aimed to assess the use of parts of the moringa fruit in conjunction with sediment from an artificial pond in a zoo enclosure inhabited by Tapirus terrestris (tapir), exploring the potential treatment of these wastes, using Eisenia foetidaearthworms. Five experimental conditions were analyzed, whose waste proportions were varied. The vermicomposts were not phytotoxic and differed regarding the C/N ratio; those that received parts of the moringa fruit had a higher C/N ratio. As commonly observed in stabilization processes, the contents of P, K, Ca, and electrical conductivity increased, while carbon and pH decreased during stabilization. Plant development of Catharanthus roseus was evaluated using, in addition to the vermicomposts, two commercial composts. The vermicomposts provided better development of C. roseus than the commercial composts, with T2 (65% sediment+35% fruit valves) and T3 (50% sediment+35% valves+15% seed husks) standing out as the best treatments. Vermicomposting associated with moringa co-products and zoo waste is a viable alternative via aerobic treatment, favoring waste management and the search for sustainability.

Downloads

Download data is not yet available.

References

Alshehrei, F.; Ameen, F., 2021. Vermicomposting: a management tool to mitigate solid waste. Saudi Journal of Biological Sciences, v. 28, (6), 3284-3293. https://doi.org/10.1016/j.sjbs.2021.02.072

Association of Official Analytical Chemists (AOAC), 2005. Official Methods of Analysis. 18. ed. Association of Official Analytical Chemists, Gaithersburg.

Asses, N.; Farhat, A.; Cherif, S.; Hamdi, M.; Bouallagui, H., 2018. Comparative study of sewage sludge co-composting with olive mill wastes or green residues: process monitoring and agriculture value of the resulting composts. Process Safety and Environmental Protection, v. 114, 25-35. https://doi.org/10.1016/j.psep.2017.12.006

Attah, A.F.; Akindele, O.O.; Nnamani, P.O.; Jonah, U.J.; Sonibare, M.A.; Moody, J.O., 2022. Moringa oleifera seed at the interface of food and medicine: effect of extracts on some reproductive parameters, hepatic and renal histology. Frontiers in Pharmacology, v. 13, 816498. https://doi.org/10.3389/fphar.2022.816498

Barhoi, D.; Upadhaya, P.; Barbhuiya, S.N.; Giri, A.; Giri, S., 2021. Aqueous extract of Moringa oleifera exhibit potential anticancer activity and can be used as a possible cancer therapeutic agent: a study involving in vitro and in vivo approach. Journal of the American College of Nutrition, v. 40, (1), 70-85. https://doi.org/10.1080/07315724.2020.1735572

Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A., 2018. Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia Illucens). Entomologia Experimentalis et Applicata, v. 166, (9), 761-770. https://doi.org/10.1111/eea.12716

Bernal, M.P.; Alburquerque, J.A.; Moral, R., 2009. Composting of Animal Manures and Chemical Criteria for Compost Maturity Assessment. A Review. Bioresource Technology, v. 100, (22), 5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027

Bhutada, P.R.; Jadhav, A J.; Pinjari, D.V.; Nemade, P.R.; Jain, R.D., 2016. Solvent assisted extraction of oil from Moringa oleifera Lam. seeds. Industrial Crops and Products, v. 82, 74-80. https://doi.org/10.1016/j.indcrop.2015.12.004

Bodmer, R.E., 1991. Influence of digestive morphology on resource partitioning in Amazonian ungulates. Oecologia, v. 85, (3), 361-365. https://doi.org/10.1007/BF00320611

Brasil, 2009. Ministério da Agricultura, Pecuária e Abastecimento Secretaria de Defesa Agropecuária. Instrução Normativa DAS nº 25, de 23 de julho de 2009. Diário Oficial da União, Seção I, nº 173, quinta-feira, 28 de julho de 2009.

Brazilian Agricultural Research Corporation (EMBRAPA), 2009. Manual of Chemical Analysis of Soils, Plants and Fertilizers. Edited by Embrapa Soils/Embrapa Computing/Embrapa Agriculture. Brasília: Technological Information Technology Transfer.

Brilhante, R.S.N.; Sales, J.A.; Pereira, V.S.; Castelo-Branco, D.S.C.M.; Cordeiro, R.A.; Sampaio, C.M.S.; Paiva, M.A.N.; dos Santos, J.B.F.; Sidrim, J.J.C.; Rocha, M.F.G., 2017. Research advances on the multiple uses of Moringa oleifera: a sustainable alternative for socially neglected population. Asian Pacific Journal of Tropical Medicine, v. 10, (7), 621-630. https://doi.org/10.1016/j.apjtm.2017.07.002

Cappelini, L.T.D.; Eugênio, P.F.M.; Alberice, J.V.; Urbaczek, A.C.; Assunção, N.A.; Ramos, P.L.; Sala, F.C.; Carrilho, E.; Juliano, L.; Carrilho, E.N.V.M., 2021. Compost produced from residues of a zoo park improves soil fertility and increases the growth and production of plants. Biomass Conversion and Biorefinery, v. 12, 4233-4244. https://doi.org/10.1007/s13399-021-01552-4

Caspers, H., 1984. OECD: Eutrophication of Waters. Monitoring, Assessment and Control. — 154 pp. Paris: Organisation for Economic Co-Operation and Development 1982. (Publié en français sous le titre »Eutrophication des Eaux. Méthodes de Surveillance, d'Evaluation et de Lutte«). Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, v. 69, (2), 200-200. https://doi.org/10.1002/iroh.19840690206

Castilhos, R.M.V.; Dick, D.P.; Castilhos, D.D.; Morselli, T.B.A.G.; Costa, P.F.P.D.; Casagrande, W.B.; Rosa, C.M., 2008. Distribuição e caracterização de substâncias húmicas em vermicompostos de origem animal e vegetal. Revista Brasileira de Ciência do Solo, v. 32, (spe), 2669-2675. https://doi.org/10.1590/S0100-06832008000700009

Cotta, J.A.O.; Carvalho, N.L.C.; Brum, T.S.; Rezende, M.O.O., 2015. Compostagem versus vermicompostagem: comparação das técnicas utilizando resíduos vegetais, esterco bovino e serragem. Engenharia Sanitária e Ambiental, v. 20, (1), 65-78. https://doi.org/10.1590/S1413-41522015020000111864

Cunha-Queda, A.C.F.; Vallini, G.; Sousa, R.F.X.B.; Duarte, E.C.N.F.A., 2003. Estudo da evolução de actividades enzimáticas durante a compostagem de resíduos provenientes de mercados horto-frutícolas. Anais do Instituto Superior de Agronomia, 193-208.

Dario, F.R., 2014. Frugivory and seed dispersal by mammals in the amazon rainforest. Asian Journal of Biological and Life Sciences, v. 3, (2), 137-142.

Dores-Silva, P.R.; Landgraf, M.D.; Rezende, M.O.O., 2013. Processo de estabilização de resíduos orgânicos: vermicompostagem versus compostagem. Química Nova, v. 36, (5), 640-645. https://doi.org/10.1590/S0100-40422013000500005

El-Hadidy, G. A. M.; Mahmoud, T. S. M.; Shaaban, F. K. M.; Hemdan, N. A., 2022. Effect of organic fertilization with Moringa oleifera seeds cake and compost on storability of valencia orange fruits. Egyptian Journal of Chemistry, v. 65, (2), 659-667. https://doi.org/10.21608/EJCHEM.2021.90997.4329

Enebe, M.C.; Erasmus, M., 2023. Vermicomposting technology - a perspective on vermicompost production technologies, limitations and prospects. Journal of Environmental Management, v. 345, 118585. https://doi.org/10.1016/j.jenvman.2023.118585

Ezeamaku, U.L.; Chike-Onyegbula, C.O.; Iheaturu, N.C.; Onwuka, E.O.; Ezike, C.C., 2018. Treatment of lead contaminated wastewater using aluminium sulphate and Moringa oleifera as coagulants. Nigerian Journal of Polymer Science and Technology, v. 13, (1119-4111), 82-92.

Factors FA, 2020. Global moringa products market anticipates to reach USD 8,400 million by 2026 (Accessed August 18, 2023) at:. https://www.fnfresearch.com/news/global-moringa-products-market-anticipates-to-reach-the.

Garg, P.; Gupta, A.; Satya, S., 2006. Vermicomposting of different types of waste using eisenia foetida: a comparative study. Bioresource Technology, v. 97, (3), 391-395. https://doi.org/10.1016/j.biortech.2005.03.009

Gharsallah, K.; Rezig, L.; Msaada, K.; Chalh, A.; Soltani, T., 2021. chemical composition and profile characterization of Moringa oleifera seed oil. South African Journal of Botany, v. 13, 475-482. https://doi.org/10.1016/j.sajb.2020.11.014

Gusain, R.; Suthar, S., 2020. Vermicomposting of duckweed (Spirodela polyrhiza) by employing Eisenia fetida: changes in nutrient contents, microbial enzyme activities and earthworm biodynamics. Bioresource Technology, v. 311, 123585. https://doi.org/10.1016/j.biortech.2020.123585

Ishihara, M.K.; Silva, G.J.B.; Finzi-Quintão, C.M.; Novack, K.M., 2021. Moringa oleifera seed peel structure and its performance in cementitious composite. Materials Research, 24, (Suppl 2), e20210328. https://doi.org/10.1590/1980-5373-mr-2021-0328

International Union of Pure and Applied Chemistry (IUPAC), 1979. Standard methods for the analysis of oils, fats and derivatives. 6. ed. Oxford, Perganon Press.

Jattan, M.; Kumari, N.; Kumar, R.; Kumar, A.; Rani, B.; Phogat, D. S.; Kumar, S.; Kumar, P., 2021. Moringa (Moringa oleifera L.): an underutilized and traditionally valued tree holding remarkable potential. Journal of Horticultural Sciences, v. 16, (1), 1-13. https://doi.org/10.24154/JHS.2021.v16i01.001

Jjagwe, J.; Komakech, A.J.; Karungi, J.; Amann, A.; Wanyama, J.; Lederer, J., 2019. Assessment of a cattle manure vermicomposting system using material flow analysis: a case study from Uganda. Sustainability, v. 11, (19), 5173. https://doi.org/10.3390/su11195173

Kachangoon, R.; Vichapong, J.; Santaladchaiyakit, Y.; Srijaranai, S., 2022. Green fabrication of Moringa oleifera seed as efficient biosorbent for selective enrichment of triazole fungicides in environmental water, honey and fruit juice samples. Microchemical Journal, v. 175, 107194. https://doi.org/10.1016/j.microc.2022.107194

Kavithambika, S.; Indumathi, V.M.; Mahendran, K., 2020. Moringa oleifera: production and marketing in Tiruppur District. Advances in Research, v. 21, (9), 89-97. https://doi.org/10.9734/air/2020/v21i930237

Khan, M.S.A.; Abbott, L.K.; Solaiman, Z.M.; Mawson, P.R.; Waite, I.S.; Jenkins, S.N., 2022. Complementary effect of zoo compost with mineral nitrogen fertilisation increases wheat yield and nutrition in a low-nutrient soil. Pedosphere, v. 32, (2), 339-347. https://doi.org/10.1016/S1002-0160(21)60078-4

Li, Y.; Liu, Q.; Liu, F.; Zhu, P.; Zhang, L.; Zhou, X.; Sun, C.; Cheng, Y., 2016. Effects of different ratios of sewage sludge and cattle manure on growth and propagation of Eisenia fetida. PLOS ONE, v. 11, (6), e0156492. https://doi.org/10.1371/journal.pone.0156492

Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D., 2018. Seed germination test for toxicity evaluation of compost: its roles, problems and prospects. Waste Management, v. 71, 109-114. https://doi.org/10.1016/j.wasman.2017.09.023

Malavolta, E.; Vitti, G.C.; Oliveira, S.A., 1997. Avaliação do estado nutricional das plantas. 2. ed. v. 32. Potafos, Piracicaba.

Masih, L.P.; Singh, S.; Elamathi, S.; Anandhi, P.; Abraham, T., 2019. Moringa: a multipurpose future crop- a review. Proceedings of the Indian National Science Academy, v. 3, 589-601. https://doi.org/10.16943/ptinsa/2019/49579

Melo, M.F.; Silva, E.F.; Costa, F.C.L.; Santana, E.A.; Vasconcelos, A.A.; Ferreira, E.A.; Freitas, D.F.; Dias, N.S.; Morais, F.M.S.; Silva, L.F., 2020. Vermicompostagem: conversão de resíduos orgânicos em benefícios para solo e plantas. In: Andrade, D.F. Tópicos em Ciências Agrárias. v. 6. Editora Poisson, Belo Horizonte. https://doi.org/10.36229/978-65-86127-68-3.CAP.04

Meneghel, A.P.; Gonçalves Jr., A.C.; Rubio, F.; Dragunski, D.C.; Lindino, C.A.; Strey, L., 2013. Biosorption of cadmium from water using moringa (Moringa oleifera Lam.) Seeds. Water, Air, and Soil Pollution, v. 224, (3). https://doi.org/10.1007/s11270-012-1383-2

Meng, X.; Liu, B.; Zhang, H.; Wu, J.; Yuan, X.; Cui, Z., 2019. Co-Composting of the biogas residues and spent mushroom substrate: physicochemical properties and maturity assessment. Bioresource Technology, v. 276, 281-287. https://doi.org/10.1016/j.biortech.2018.12.097

Mohanty, M.; Mohanty, S.; Bhuyan, S.K.; Bhuyan, R., 2021. Phytoperspective of Moringa oleifera for oral health care: an innovative ethnomedicinal approach. Phytotherapy Research, v. 35, (3), 1345-1357. https://doi.org/10.1002/ptr.6896

Morgan, C.R.; Opio, C.; Migabo, S., 2020. Chemical Composition of Moringa (Moringa oleifera) root powder solution and effects of moringa root powder on E. coli growth in contaminated water. South African Journal of Botany, v. 129, 243-248. https://doi.org/10.1016/j.sajb.2019.07.020

Nakhshiniev, B.; Gonzales, H.B.; Yoshikawa, K., 2012. Hydrothermal treatment of date palm lignocellulose residue for organic fertilizer conversion: effect on cell wall and aerobic degradation rate. Compost Science & Utilization, v. 20, (4), 245-253. https://doi.org/10.1080/1065657X.2012.10737055

Ndegwa, P.M.; Thompson, S.A., 2000. Effects of C-to-N Ratio on vermicomposting of biosolids. Bioresource Technology, v. 75, (1), 7-12. https://doi.org/10.1016/S0960-8524(00)00038-9.

Nkoa, R., 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, v. 34, (2), 473-492. https://doi.org/10.1007/s13593-013-0196-z

Oliveira Tavares, F.; Moraes Pinto, L.A.; Marinozi Vicentini, J.C.; Vieira, M.F.; Bergamasco, R.; Vieira, A.M.S., 2020. Analysis of the influence of natural adsorbent functionalization (Moringa oleifera) for Pb(II) removal from contaminated water. Environmental Progress & Sustainable Energy, v. 39, (2), e13318. https://doi.org/10.1002/ep.13318

Orrico Junior, M.A.P.; Amorim Orrico, A.C.; Manarelli, D.M.; Teixeira Lopes, W.R.; Watte Schwingel, A., 2018. Estimated reduction in solids during sheep bedding composting as a function of the composition of the organic fractions. Compost Science & Utilization, v. 26, (2), 91-97. https://doi.org/10.1080/1065657X.2017.1379916

Patil, S.V.; Mohite, B.V.; Marathe, K.R.; Salunkhe, N.S.; Marathe, V.; Patil, V.S., 2022. Moringa tree, gift of nature: a review on nutritional and industrial potential. Current Pharmacology Reports, v. 8, (4), 262-280. https://doi.org/10.1007/s40495-022-00288-7.

Pérez-Godínez, E. A.; Lagunes-Zarate, J.; Corona-Hernández, J.; Barajas-Aceves, M., 2017. Growth and reproductive potential of Eisenia foetida (Sav) on various zoo animal dungs after two methods of pre-composting followed by vermicomposting. Waste Management, v. 64, 67-78. https://doi.org/10.1016/j.wasman.2017.03.036

R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Rébufa, C.; Dupuy, N.; Bombarda, I., 2021. AComDim, a multivariate tool to highlighting impact of agroclimatic factors on Moringa oleifera Lam. leaf’s composition from their FTIR-ATR profiles. Vibrational Spectroscopy, v. 116, 103297. https://doi.org/10.1016/j.vibspec.2021.103297

Ripp, P.G.; Gusmão, A.P.; Lorin, H.E.F.; Costa, M.S.S.M.; Edwiges, T., 2020. Composting process in the production of lettuce seedling substrates: effect of covering and turning frequency. Engenharia Agrícola, v. 40, (5), 562-570. https://doi.org/10.1590/1809-4430-eng.agric.v40n5p562-570/2020

Saint-Denis, M.; Narbonne, J.F.; Arnaud, C.; Ribera, D., 2001. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effects of lead acetate. Soil Biology and Biochemistry, v. 33, (3), 395-404. https://doi.org/10.1016/S0038-0717(00)00177-2

Santos, F.T.D.; Fehmberger, C.; Aloisio, C.M.; Bautitz, I.R.; Hermes, E., 2021. Composting of swine production chain wastes with addition of crude glycerin: organic matter degradation kinetics, functional groups, and carboxylic acids. Environmental Science and Pollution Research, v. 28, (36), 50542-50553. https://doi.org/10.1007/s11356-021-14063-6

Stevenson, F.J., 1994. Humus chemistry: genesis, composition, reactions. John Wiley. New York.

Tahir, N.A.; Majeed, H.O.; Azeez, H.A.; Omer, D.A.; Faraj, J.M., 2020. Allelopathic plants: 27. Moringa species. Allelopathy Journal, v. 50, (1), 35-48. https://doi.org/10.26651/allelo.j/2020-50-1-1272

Tahir, N.A.; Qader, K.O.; Azeez, H.A.; Rashid, J.S., 2018. Inhibitory allelopathic effects of Moringa oleifera lamk plant extracts on wheat and sinapis arvensis L. Allelopathy Journal, v. 44, (1), 53-66. https://doi.org/10.26651/allelo.j./2018-44-1-1152

Tavares, F.O.; Moraes Pinto, L.A.; Bassetti, F.J.; Vieira, M.F.; Bergamasco, R.; Vieira, A.M.S., 2017. Environmentally friendly biosorbents (Husks, Pods and Seeds) from Moringa oleifera for Pb(II) removal from contaminated water. Environmental Technology, v. 38, (24), 3145-3155. https://doi.org/10.1080/09593330.2017.1290150.

Thoisy, B.; Pukazhenthi, B.; Janssen, D. L.; Lira Torres, I.; May Jr, J. A.; Medici, P.; Mangini, P. R.; Blanco Marquez, P. A.; Vanstreels, R. E. T.; Fernandes-Santos, R. C.; Hernández-Divers, S.; Quse, V., 2014. Tapir Veterinary Manual. Edited by V. Quse and R.C. Fernandes-Santos. 2. ed. IUCN/SSC Tapir Specialist Group (TSG).

Ticiani, D.; Onghero, O.; Favretto, M.A., 2021. First records of lowland tapir, Tapirus terrestris (Perissodactyla, Tapiridae), outside conservation areas after 30 years, in Santa Catarina, Southern Brazil. Neotropical Biology and Conservation, v. 16, (2), 239-247. https://doi.org/10.3897/neotropical.16.e61001

Torri, S.I.; Corrêa, R.S.; Renella, G., 2017. Biosolid application to agricultural land — a contribution to global phosphorus recycle: a review. Pedosphere, v. 27, (1), 1-16. https://doi.org/10.1016/S1002-0160(15)60106-0

Trigo, C.; Castelló, M.L.; Ortolá, M.D.; García-Mares, F.J.; Soriano, M.D., 2020. Moringa oleifera: an unknown crop in developed countries with great potential for industry and adapted to climate change. Foods, v. 10, (1), 31. https://doi.org/10.3390/foods

van Soest, P., 1994. Nutritional Ecology of the Ruminant. 2. ed. Cornell University Press, New York.

Vico, A.; Pérez-Murcia, M.D.; Bustamante, M.A.; Agulló, E.; Marhuenda-Egea, F.C.; Sáez, J.A.; Paredes, C.; Pérez-Espinosa, A.; Moral, R., 2018. Valorization of date palm (Phoenix Dactylifera L.) pruning biomass by co-composting with urban and agri-food sludge. Journal of Environmental Management, v. 226, 408-415. https://doi.org/10.1016/j.jenvman.2018.08.035

Voběrková, S.; Vaverková, M.D.; Burešová, A.; Adamcová, D.; Vršanská, M.; Kynický, J.; Brtnický, M.; Adam, V., 2017. Effect of inoculation with white-rot Fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Management, v. 61, 157-164. https://doi.org/10.1016/j.wasman.2016.12.039

World Association of Zoos and Aquariums (WAZA), 2020. Protegendo Nosso Planeta. Estratégias de Sustentabilidade 2020-2030. World Association of Zoos and Aquariums (Accessed April 02, 2023) at:. https://www.waza.org/wp-content/uploads/2021/01/portuguese_waza-sustainability-strategy-2020-copy.pdf.

Yuvaraj, A.; Thangaraj, R.; Ravindran, B.; Chang, S.W.; Karmegam, N., 2021. Centrality of cattle solid wastes in vermicomposting technology – a cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environmental Pollution, v. 268, 115688. https://doi.org/10.1016/j.envpol.2020.115688

Zucconi, F.; Pera, A.; Forte, M.; DeBertoldi, M., 1981. Evaluating Toxicity of Immature Compost. BioCycle, v. 22, (2), 54-57.

Downloads

Published

2024-03-05

How to Cite

Rubio, F., Coldebella , P. F., Boroski, M., Guimarães, A. T. B., & Gonçalves, C. da C. S. (2024). Sustainable valorization of Moringa oleifera Lam. co-products and zoo waste. Revista Brasileira De Ciências Ambientais, 59, e1816. https://doi.org/10.5327/Z2176-94781816

Issue

Section

Especial Section: Bioprocesses and Sustainability