Modeling future carbon stock in melon cultivation agroecosystems under different climate scenarios
DOI:
https://doi.org/10.5327/Z2176-94781729Keywords:
Cucumis melo L; climate change; RothC.Abstract
Intensive melon cultivation is based on conventional monoculture models that can inefficiently use natural resources, which, combined with inadequate management, contribute to climate change. The main objective of this study was to model the future carbon stock in melon cultivation agroecosystems under different climate scenarios. The study was conducted at the Bebedouro Experimental Field of Embrapa Semi-arid, Petrolina/PE, Brazil, in an area cultivated with yellow melon cv. Gladial, and eight cultivation cycles were considered. The experimental design was composed of two types of soil management (with and without tillage), two treatments using green manures consisting of 14 species with different proportions of legumes, grasses and oilseeds, and spontaneous vegetation, containing four replications divided into randomized blocks. After 70 days of development, the plants were cut and placed in the soil. Temperature and precipitation data were acquired from the BCC-CSM, MIROC5, CESM1-BGC, IPSL-CM5B-LR, and HadGEM2-AO climate models, following the RCP 4.5 and 8.5 climate scenarios. The carbon (C) stock was estimated until the year 2071 using the RothC model. The treatment with a predominance of legumes and no rotation increased the C stock in the soil, regardless of the climate scenario. The soil tillage did not favor C accumulation, meaning that none of the treatments reached the same stock as the Caatinga. The MIROC5 model in the RCP 4.5 scenario favored greater C accumulation in the soil, while the lowest C stocks occurred in the CESM1-BGC and IPSL-CM5B-LR models under the RCP 8.5 scenario.
Downloads
References
Barbehenn, R.V.; Chen, Z.; Karowe, D.N.; Spickard, A., 2004. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Global Change Biology, v. 10, (9), 1565-1575. https://doi.org/10.1111/j.1365-2486.2004.00833.x
Barros, V.S.; Santos, T.L.; Figueiredo, M.C.B.; Silva, E.O.; Sousa, J.A.; Aragao, F.A.S., 2017. Pegada de carbono de produtos agrícolas: estudo de caso do melão Amarelo. In: Figueirêdo, M.C.B.; Gondim, R.S.; Aragão, F.A.S. (Eds.), Produção de melão e mudanças climáticas: sistemas conservacionistas de cultivo para redução das pegadas de carbono e hídrica. Embrapa, Brasília, DF, pp. 165-185.
Bolinder, M.A.; Janzen, H.H.; Gregorich, E.G.; Angers, D.A.; Vandenbygaart, B., 2007. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems & Environment, v. 118, (1-4), 29-42. https://doi.org/10.1016/j.agee.2006.05.013
Coleman, K.; Jenkinson, D.S.; Crocker, G.J.; Grace, P.R.; Klir, J.; Körschens, M.; Richter, D. D., 1997. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma, v. 81, (1-2), 29-44. https://doi.org/10.1016/S0016-7061(97)00079-7
De Lima, M.A., 2002. Agropecuária brasileira e as mudanças climáticas globais: caracterização do problema, oportunidades e desafios. Cadernos de Ciência & Tecnologia, v. 19, (3), 451-472. https://dx.doi.org/10.35977/0104-1096.cct2002.v19.8816
Deus, J.A.L..; Soares, I.; Neves, J.C.L.; Medeiros, J.F.D.; Miranda, F.R.D., 2015. Fertilizer recommendation system for melon based on nutritional balance. Revista Brasileira de Ciência do Solo, v. 39, 498-511. https://doi.org/10.1590/01000683rbcs20140172
Deus, T.R.V.; Giongo, V.; Salviano, A.M.; Santana, M.S.; Silva, V.C.; Santos, T.C., 2022. Selection of green manures to provide ecosystem services in a semi-arid environment. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 57, (3), 409-421. https://doi.org/10.5327/Z2176-94781268
Döll, P., 2002. Impact of climate change and variability on irrigation requirements: a global perspective. Climatic Change, v. 54, (3), 269-293. https://doi.org/10.1023/A:1016124032231
Dunning, C.M.; Black, E.; Allan, R.P., 2018. Later wet seasons with more intense rainfall over Africa under future climate change. Journal of Climate, v. 31, (23), 9719-9738. https://doi.org/10.1175/JCLI-D-18-0102.1
Falcão, K.S.; Monteiro, F.N.; Ozório, J.M.B.; Souza, C.B.S.; Farias, P.G.S.; Menezes, R.S.; Panachuki, E.; Rosset, J.S., 2020. Carbon stock and soil aggregation under different use systems in the cerrado. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 55, (2), 242-255. https://doi.org/10.5327/Z2176-947820200695
Fang, L.; Tao, S.; Zhu, J.; Liu, Y., 2018. Impacts of climate change and irrigation on lakes in arid northwest China. Journal of Arid Environments, v. 154, 34-39. https://doi.org/10.1016/j.jaridenv.2018.03.008
Foguesatto, C.R.; Borges, J.A.R.; Machado, J.A.D., 2019. Farmers’ typologies regarding environmental values and climate change: Evidence from southern Brazil. Journal of Cleaner Production, v. 232, 400-407. https://doi.org/10.1016/j.jclepro.2019.05.275
Giongo, V.; Coleman, K.; da Silva Santana, M.; Salviano, A.M.; Olszveski, N.; Silva, D J.; Richter, G.M., 2020. Optimizing multifunctional agroecosystems in irrigated dryland agriculture to restore soil carbon–Experiments and modelling. Science of the Total Environment, v. 725, 138072. https://doi.org/10.1016/j.scitotenv.2020.138072
Giongo, V.; Salviano, A.M.; Santana, M.D.S.; Costa, N.D.; Yuri, J.E., 2016. Soil management systems for sustainable melon cropping in the submedian of the São Francisco Valley. Revista Caatinga, v. 29, (3), 537-547. https://doi.org/10.1590/1983-21252016v29n303rc
Gondim, R.; Silveira, C.; de Souza Filho, F.; Vasconcelos, F.; Cid, D., 2018. Climate change impacts on water demand and availability using CMIP5 models in the Jaguaribe basin, semi-arid Brazil. Environmental Earth Sciences, v. 77, 1-14. https://doi.org/10.1007/s12665-018-7723-9
Herbst, M.; Welp, G.; Macdonald, A.; Jate, M.; Hädicke, A.; Scherer, H.; Vanderborght, J., 2018. Correspondence of measured soil carbon fractions and RothC pools for equilibrium and non-equilibrium states. Geoderma, v. 314, 37-46. https://doi.org/10.1016/j.geoderma.2017.10.047
Huang, X.; Terrer, C.; Dijkstra, F.A.; Hungate, B.A.; Zhang, W.; van Groenigen, K.J., 2020. New soil carbon sequestration with nitrogen enrichment: a meta-analysis. Plant and Soil, v. 454, (1), 299-310. https://doi.org/10.1007/s11104-020-04617-x
Instituto Brasileiro de Geografia e Estatística (IBGE), 2019. Produção agrícola municipal (Accessed March 10, 2021) at:. http://sidra.ibge.gov.br
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. 4. ed. International Union of Soil Sciences, Vienna, 236 p.
Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H.; Alves, B.J.R.; Morrison, M.J., 2012. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agronomy for Sustainable Development, v. 32, 329-364. https://doi.org/10.1007/s13593-011-0056-7
Jong, P.; Tanajura, C.A.S.; Sánchez, A.S.; Dargaville, R.; Kiperstok, A.; Torres, E.A., 2018. Hydroelectric production from Brazil's São Francisco River could cease due to climate change and inter-annual variability. Science of the Total Environment, v. 634, 1540-1553. https://doi.org/10.1016/j.scitotenv.2018.03.256
Lal, R., 2018. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, v. 24, (8), 3285-3301. https://doi.org/10.1111/gcb.14054
Li, J.; Fei, L.; Li, S.; Xue, C.; Shi, Z.; Hinkelmann, R., 2020. Development of “water-suitable” agriculture based on a statistical analysis of factors affecting irrigation water demand. Science of The Total Environment, v. 744, 140986. https://doi.org/10.1016/j.scitotenv.2020.140986
Machado, P.L.D.A., 2005. Carbono do solo e a mitigação da mudança climática global. Química Nova, v. 28, 329-334. https://doi.org/10.1590/S0100-40422005000200026
Morais, D.H.O.; Silva, C.A.; Rosset, J.S.; Farias, P.G.S.; Souza, C.B.S.; Barros Ozório, J.M.; Castilho, S.C.; Marra, L.M., 2021. Stock and indices of carbon management under different soil use systems. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 56, (2), 286-295. https://doi.org/10.5327/Z21769478867
Müller Carneiro, J.; Dias, A.F.; Barros, V.D.S.; Giongo, V.; Folegatti Matsuura, M.I.D.S.; Brito de Figueiredo, M.C., 2019. Carbon and water footprints of Brazilian mango produced in the semiarid region. The International Journal of Life Cycle Assessment, v. 24, 735-752. https://doi.org/10.1007/s11367-018-1527-8
Peng, J.; Dan, L.; Wang, Y.P.; Tang, X.; Yang, X.; Yang, F.; Pak, B., 2018. Role contribution of biological nitrogen fixation to future terrestrial net land carbon accumulation under warming condition at centennial scale. Journal of Cleaner Production, v. 202, 1158-1166. https://doi.org/10.1016/j.jclepro.2018.08.089
Peng, J.; Wang, Y.P.; Houlton, B.Z.; Dan, L.; Pak, B.; Tang, X., 2020. Global carbon sequestration is highly sensitive to model‐based formulations of nitrogen fixation. Global Biogeochemical Cycles, v. 34, (1), e2019GB006296. https://doi.org/10.1029/2019GB006296
Santos, H.G.; Jacomine, P K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F., 2018a. Sistema brasileiro de classificação de solos. Embrapa, Brasília, 355 p.
Santos, T.L.; Nunes, A.B.A.; Giongo, V.; da Silva Barros, V.; de Figueirêdo, M.C.B., 2018b. Cleaner fruit production with green manure: The case of Brazilian melons. Journal of Cleaner Production, v. 181, 260-270. https://doi.org/10.1016/j.jclepro.2017.12.266.
Smith, P.; Cotrufo, M.F.; Rumpel, C.; Paustian, K.; Kuikman, P.J.; Elliott, J.A.; Scholes, M.C., 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil, v. 1, (2), 665-685. https://doi.org/10.5194/soil-1-665-2015
Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G., 2017. Manual de métodos de análise de solo. Embrapa, Brasília, DF, 574 p.
Terrer, C.; Phillips, R.P.; Hungate, B.A.; Rosende, J.; Pett-Ridge, J.; Craig, M.E.; Jackson, R.B., 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature, v. 591, (7851), 599-603. https://doi.org/10.1038/s41586-021-03306-8
Wada, Y.; Wisser, D.; Eisner, S.; Flörke, M.; Gerten, D.; Haddeland, I.; Schewe, J., 2013. Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysical Research Letters, v. 40, (17), 4626-4632. https://doi.org/10.1002/grl.50686
Wieder, W.R.; Cleveland, C.C.; Lawrence, D.M.; Bonan, G.B., 2015. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environmental Research Letters, v. 10, (4), 044016. https://doi.org/10.1088/1748-9326/10/4/044016
Xu, W.; Chang, J.; Ciais, P.; Guenet, B.; Viovy, N.; Ito, A.; Hickler, T., 2020. Reducing uncertainties of future global soil carbon responses to climate and land use change with emergent constraints. Global Biogeochemical Cycles, v. 34, (10), e2020GB006589. https://doi.org/10.1029/2020GB006589
Zhang, D.; Yao, P.; Zhao, N.; Cao, W.; Zhang, S.; Li, Y.; Gao, Y., 2019. Building up the soil carbon pool via the cultivation of green manure crops in the Loess Plateau of China. Geoderma, v. 337, 425-433. https://doi.org/10.1016/j.geoderma.2018.09.053
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.