Spatial variability of edaphic attributes on Coleoptera (Insecta) in land use systems

Authors

DOI:

https://doi.org/10.5327/Z2176-94781704

Keywords:

bioindicators; subtropical landscape; Geostatistics.

Abstract

The alteration of the natural landscape structure affects abiotic conditions and promotes a biological response in the local community. The diversity of edaphic organisms is related to the diversity of other taxa and abiotic characteristics, which represent potential bioindicators of the ecosystem. The objective of this study was to identify which soil attributes explain the beetle community and explore their effects through spatial modeling. The study was conducted in three landscapes in western Santa Catarina (Brazil), located in Chapecó, Pinhalzinho, and São Miguel do Oeste. The land use and cover systems identified were: no-till farming, native forest, pasture, eucalyptus planting, crop-livestock integration, and shrub vegetation. Soil, plant litter, and Coleoptera samples were collected.The variables were selected through the Threshold Indicator Taxa Analysis and spatial modeling by Geostatistics. Higher values of soil penetration resistance, associated with the no-till system, resulted in a lower abundance of Staphylinidae beetles, conditioned by total soil porosity. Lower volumetric moisture values, identified in the no-till system near native vegetation fragments, led to increased abundance of Nitidulidae family beetles, due to the family’s adaptability to dry environments. The trend of higher microbial carbon concentration in native vegetation areas explained the greater abundance of Chrysomelidae family beetles in these areas, due to the phytophagous habits of the species in this family. Thus, the Coleoptera community has the potential to serve as bioindicators of soil quality, and their relationships with soil physics, chemical, and microbial attributes can be spatially modeled through Geostatistics.

Downloads

Download data is not yet available.

References

Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes Gonçalves, J.L.; Sparovek, G., 2014. K¨oppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507

Anderson, J.M.; Ingram, J.S.I., 1993. Tropical soil biology and fertility: a handbook of methods. C-A-B International, Wallingford, 265 p.

Andriotti, J.L.S., 2004. Fundamentos de Estatística e Geoestatística. Unisinos, São Leopoldo, 165 p.

Audino, L.D.; Nogueira, J.M.; Silva, P.G.; Neske, M.Z.; Ramos, A.H.B.; Moraes, L.P.M.; Borba, M.F.S., 2007. Identificação dos coleópteros (Insecta: Coleoptera) das regiões de Palmas (município de Bagé) e Santa Barbinha (município de Caçapava do Sul, RS). Embrapa Pecuária Sul-Documentos (INFOTECA-E), Bagé.

Baretta, D.; Bartz, M.L.C.; Fachini, I.; Anselmi, R.; Zortéa, T.; Baretta, C.R.D.M., 2014. Soil fauna and its relation with environmental variables in soil management systems. Revista Ciência Agronômica, v. 45, (5), 871-879. https://doi.org/10.1590/S1806-66902014000500002

Baretta, D.; Mafra, A.L.; Santos, J.C.P.; Amarante, C.V.T; Bertol, I., 2006. Análise multivariada da fauna edáfica em diferentes sistemas de preparo e cultivo do solo. Pesquisa Agropecuária Brasileira, v. 41, (11), 1675-1679. https://doi.org/10.1590/S0100-204X2006001100014

Bernardes, A.C.C.; Oliveira, O.C.C.; Silva, R.A.; Albuquerque, P.M.C.; Rebêlo, J.M.M.; Viana, J.H.; Siqueira, G.M, 2020. Abundance and diversity of beetles (Insecta: Coleoptera) in land use and management systems. Revista Brasileira de Ciência do Solo, v. 44, e0190183. https://doi.org/10.36783/18069657rbcs20190183

Boston, W.; Leemon, D.; Cunningham, J.P., 2020. Virulence screen of Beauveria bassiana isolates for Australian Carpophilus (Coleoptera: Nitidulidae) beetle biocontrol. Agronomy, v. 10, (8), 1207. https://doi.org/10.3390/agronomy10081207

Casari, A.S.; Ide, S. Coleoptera. In: Rafael, J.A; Melo, G.A.R.D; Carvalho, C.J.B.D; Casari, S.A.; Constantino, R. (Ed.), Insetos do Brasil: diversidade e taxonomia. Holos, Ribeirão Preto, 2012.

Cifuentes, A.G.; Suárez, W.R.; Boulandier, M.N., 2019. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: scarabaeinae) in the Southern Atlantic Forest of Argentina. Journal of Insect Conservation, v. 21, (1), 147-156. https://doi.org/10.1007/s10841-017-9964-4

Correa, C.M.A.; Da Silva, P.G., 2022. Environmental drivers of taxonomic and functional diversity of dung beetles across a chronosequence of tropical grasslands with different cattle grazing removal ages. Austral Ecology, v. 47, (5), 928-938. https://doi.org/10.1111/aec.13174

Correia, M.E.F.; Oliveira, L.C.M. de, 2000. Fauna de solo: aspectos gerais e metodológicos. Embrapa Agrobiologia, Seropédica, 46p.

Dionisio, L.F.S.; Lima, A.C.S.; Morais, E.G.F.; Farias, P.R.S.; Correia, R.G.; Martins, W.B.R.; Santos, A.V.F., 2020. Spatial distribution of Rhynchophorus palmarum L. (Coleoptera: Curculionidae) in oil palm, Roraima state, Brazil. Revista Brasileira de Ciências, v. 15, (1), 1-9. https://doi.org/10.5039/agraria.v15i1a5683

Dos Santos, K.F.; Barbosa, F.T.; Bertol, I.; Werner, R.S.; Wolshcick, N.H.; Museka, L.M., 2019. Resistência à penetração das raízes em diferentes tipos de usos da terra no planalto sul catarinense. Revista de Engenharia e Tecnologia, v. 11, (2), 30-36.

ESRI, 2020. ArcGIS Desktop: Release 10.8.1. Environmental Systems Research Institute, Redlands.

Ezcurra, E., 2016. Anthropogenic disturbances infiltrate forest fragments. Proceedings of The National Academy of Sciences, v. 113, (19), 5150-5152. https://doi.org/10.1073/pnas.1604829113

FAO; ITPS; GSBI; SCBD; EC, 2020. State of knowledge of soil biodiversity. Status, challenges and potentialities, Report 2020. FAO, Rome. https://doi.org/10.4060/cb1928en

Fernandes, F.S.; Alves, S.S.; Santos, H.F.; Rodrigues, W.C., 2016. Staphylinidae e Silphidae (Coleoptera) como Potenciais Famílias Bioindicadoras de Qualidade Ambiental. Revista Eletrônica Teccen, v. 4, (3). https://doi.org/10.21727/teccen.v4i3.278

Gruss, I.; Twardowski, J. P.; Latawiec, A.; Królczyk, J.; Medyńska-Juraszek, A., 2019. The effect of biochar used as soil amendment on morphological diversity of Collembola. Sustainability, v. 11, (18), 5126. https://doi.org/10.3390/su11185126

Guedes, R.S.; Zanella, F.C.V.; Grossi, P.C., 2020. Sazonalidade na comunidade de Coleoptera em duas fitofisionomias de Caatinga. Ciência Florestal, v. 30, (4), 995-1007. https://doi.org/10.5902/1980509833879

Johnson, C.A.; Coutinho, R.M.; Berlin, E.; Dolphin, K.E.; Heyer, J.; Kim, B.; Leung, A.; Sabellon, J. .; Amarasekare, P., 2015. Effects of temperature and resource variation on insect population dynamics: the bordered plant bug as a case study. Functional Ecology, v. 30, (7), 1122-1131. https://doi.org/10.1111/1365-2435.12583

Kakiopoulos, G.; Demetriou, J., 2022. Contribution to the Salpingidae (Coleoptera, Tenebrionoidea) of Greece including new faunistic records and ecological data on a poorly studied family. Travaux Du Muséum National D’histoire Naturelle “Grigore Antipa”, v. 65, (2), 39-49. https://doi.org/10.3897/travaux.65.e84293

Kraft, E.; De Oliveira Filho, L.C.I.; Carneiro, M.C.; Klauberg Filho, O.; Baretta, C.R.D.M.; Baretta, D., 2021. Edaphic fauna affects soybean productivity under no-till system. Scientia Agricola, v. 78, (2), e20190137. https://doi.org/10.1590/1678-992X-2019-0137

Kumar, M.; Denis, D.M.; Singh, S.K.; Szabó, S.; Suryavanshi, S., 2018. Landscape metrics for assessment of land cover change and fragmentation of a heterogeneous watershed. Remote Sensing Applications: Society and Environment, v. 10, 224-233. https://doi.org/10.1016/j.rsase.2018.04.002

Lander, T.A.; Harris, S.A.; Cremona, P.J.; Boshier, D.H., 2019. Impact of habitat loss and fragmentation on reproduction, dispersal and species persistence for an endangered Chilean tree. Conservation Genetics, v. 20, (5), 973-985. https://doi.org/10.1007/s10592-019-01187-z

Leivas, F.W.; Ix-Balam, M.A.; Christ, T.P.; Leivas, P.T., 2022. Population dynamics and seasonality of Euspilotus (Hesperosaprinus) azureus Sahlberg (Coleoptera: Histeridae: Saprininae). Iheringia Série Zoologia, v. 112, p. e2022019. https://doi.org/10.1590/1678-4766e2022019

Lima, A.C., 1952. Insetos do Brasil. Coleópteros 1ª parte. Escola Nacional de Agronomia, Rio de Janeiro, 371p. (Série Didática, 9).

Lima, A.C., 1953. Insetos do Brasil. Coleópteros 2ª parte. Escola Nacional de Agronomia, Rio de Janeiro, 323 p.il. (Série Didática, 10).

Lima, A.C., 1955. Insetos do Brasil. Coleópteros 3ª parte. Escola Nacional de Agronomia, Rio de Janeiro, 289 p.il. (Série Didática, 11).

Lovera, L.H.; Lima, E.S.; Montanari, R.; Souza, Z.M.; Farhate, C.V.V.; Campos, M.C.C.; Torres, J.L.R., 2018. Geostatistical techniques applied to spatial distribution of macroorganisms in soybean crop. Australian Journal of Crop Science, v. 12, (03), 357-364. https://doi.org/10.21475/ajcs.18.12.03.pne646

Martin, A., 2018. The spatial scale of a species’ response to the landscape context depends on which biological response you measure. Current Landscape Ecology Reports, v. 3, (1), 23-33. https://doi.org/10.1007/s40823-018-0030-z

Martins da Silva, P.; Oliveira, J.; Ferreira, A.; Fonseca, F.; Pereira, J.A.; Aguiar, C.A.S.; Serrano, A.R.M.; Sousa, J.P.; Santos, S.A.P., 2017. Habitat structure and neighbor linear features influence more carabid functional diversity in olive groves than the farming system. Ecological Indicators, v. 79, 128-138. https://doi.org/10.1016/j.ecolind.2017.04.022

Monné, M.L.; Costa, C., 2018. Coleoptera in Catálogo Taxonômico da Fauna do Brasil. PNUD, Rio de Janeiro (Accessed April 15, 2020) at:. http://fauna.jbrj.gov.br/fauna/faunadobrasil/223

Nascimento, M.S.; Garcia, P.A.B.B.; Scoriza, R.N.; Pereira, J.E.S., 2019. Edaphic macrofauna as indicator of edge effect in semi-deciduous forest fragments. Floresta e Ambiente, v. 26, (3). https://doi.org/10.1590/2179-8087.009017

Organização Internacional de Padronização, 2006. ISO 23611-2: 2006 Qualidade do solo — Amostragem de invertebrados do solo — Parte 2: Amostragem e extração de micro-artrópodes (Collembola e Acarina). ISO, Genebra.

Paliy, A.P.; Mashkey, A.N.; Kasianenko, O.I.; Petrov, R.V.; Faly, L.I.; Palii, A.P., 2020. Distribution, bioecological peculiarities of staphylinids (Coleoptera, Staphylinidae) in livestock biocenoses of forest-steppe and steppe Ukraine. Biosystems Diversity, v. 28,(1), 24-28. https://doi.org/ 10.15421/012004

Parikh, G.; Rawtani, D.; Khatri, N., 2020. Insects as an indicator for environmental pollution. Environmental Claims Journal, v. 33, (2), 161-181. https://doi.org/10.1080/10406026.2020.1780698

Patucci, N.N.; Oliveira Filho, L.C.I.; Silva, C.B.; Oliveira, D.; Baretta, D.; Brescovit, A.D., 2018. Bioindicadores edáficos de fragmentos florestais urbanos da cidade de São Paulo (SP). Geography Department University of Sao Paulo, v. 36, 77-90. https://doi.org/10.11606/rdg.v36i0.149144

Pereira, J.M.; Baretta, D.; Oliveira Filho, L.C.I.; Baretta, C.R.D.M.; Cardoso, E.J.B.N., 2020. Fauna edáfica e suas relações com atributos químicos, físicos e microbiológicos em Floresta de Araucária. Ciência Florestal, v. 30, (1), 242-257. https://doi.org/10.5902/1980509831377

Pessotto, M.D.F.; Santana, N.A.; Jacques, R.J.S.; Freiberg, J.A.; Machado, D.N.; Piazza, E.M.; Rosa Neto, L.; Antoniolli, Z.I., 2020. Relação do uso do solo com a diversidade e a atividade da fauna edáfica. Nativa, v. 8, (3), 397-402. https://doi.org/10.31413/nativa.v8i3.9769

Pinchao, E.C; Muñoz, A.C, 2019. Mapping the spatial distribution of Conotrachelus psidii (Coleoptera: Curculionidae). Neotropical Entomology, v. 48, (4), 678-691. https://doi.org/10.1007/s13744-018-00669-y

Pompeo, P. N., 2020. Invertebrate biodiversity and its relationship with edaphic attributes, land use and landscape composition in santa catarina. Doctoral Thesis, Ciências do Solo, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages. Retrieved 2021-07-26, from https://sucupira.capes.gov.br

Pompeo, P.N.; Oliveira Filho, L.C.I.; Klauberg Filho, O.; Mafra, Á. L.; Baretta, D., 2017. Morphological diversity of Coleoptera (Arthropoda: insecta) in agriculture and forest systems. Revista Brasileira de Ciência do Solo, v. 41. https://doi.org/10.1590/18069657rbcs20160433

Pompeo, P.N.; Oliveira Filho, L.C.I.; Klauberg Filho, O.; Mafra, Á.L.; Baretta, D., 2020. Coleoptera diversity and soil properties in land use systems. Floresta e Ambiente, v. 27, (3), e20180068. https://doi.org/10.1590/2179-8087.006818

Pompeo, P.N.; Oliveira Filho, L.C.I.; Alexandre, D.; Lovatel, A.C.; da Silva, P.M.; Sousa, J.P.; Klauberg Filho, O.; Baretta, D., 2023. How does the subtropical landscape configuration influence the ecomorphological traits and community composition of ground-dwelling beetles in Southern Brazil? Applied Soil Ecology, v. 189, 104949. https://doi.org/10.1016/j.apsoil.2023.104949

Portilho, I.I.R.; Crepaldi, R.A.; Borges, C.D.; Silva, R.F.; Salton, J.C.; Mercante, F.M., 2011. Fauna invertebrada e atributos físicos e químicos do solo em sistemas de integração lavoura-pecuária. Pesquisa Agropecuária Brasileira, v. 46, (10), 1310-1320. https://doi.org/10.1590/s0100-204x2011001000027

Primieri, S.; Muniz, A.W.; Lisboa, H.M., 2017. Dinâmica do Carbono no Solo em Ecossistemas Nativos e Plantações Florestais em Santa Catarina. Floresta e Ambiente, v. 24, e00110314. https://doi.org/10.1590/2179-8087.110314

R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (Accessed June 10, 2021) at:. https://www.R-project.org/

Reay-Jones, F.P.F., 2017. Geostatistical characterization of cereal leaf beetle (Coleoptera: Chrysomelidae) distributions in wheat. Environmental Entomology, v. 46, (4), 931-938. https://doi.org/10.1093/ee/nvx122

Roveda, M.; Figueiredo Filho, A.; Pelissari, A.L.; Genú, A.M., 2018. Modelagem geoestatística da estrutura espacial arbórea e dos atributos do solo em Floresta Ombrófila Mista. Floresta, v. 48, (1), 67-76. https://doi.org/10.5380/rf.v48i1.50271

Salomão, R.P.; Brito, L.C.; Iannuzzi, L.; Lira, A.F.A.; Albuquerque, C.M.R., 2019. Effects of environmental parameters on beetle assemblage in a fragmented tropical rainforest of South America. Journal of Insect Conservation, v. 23, (1), 111-121. https://doi.org/10.1007/s10841-018-00120-y

Salomão, R.P.; González-Tokman, D.; Dáttilo, W.; López-Acosta, J.C.; Favila, M.E., 2018. Landscape structure and composition define the body condition of dung beetles (Coleoptera: scarabaeinae) in a fragmented tropical rainforest. Ecological Indicators, v. 88, 144-151. https://doi.org/10.1016/j.ecolind.2018.01.033

Santos, A.; Farias, P.; Pinho, R.; Tinôco, R.; Silva, B.; Batista, T.; Silva, G.; Silva, A., 2020. Monitoring and characterization of the spatial distribution of Rhynchophorus palmarum in conventional oil palm planting. Research Square. https://doi.org/10.21203/rs.3.rs-130179/v1

Spera, S.T.; Magalhães, C.A.S.; Denardin, J.E.; Tardin, F.D.; Matos, E.S.; Souza, L.H.C., 2019. Produção de grãos e de palhada em diferentes rotações de culturas manejadas com sistema plantio direto. In: Farias Neto, A.L.; Nascimento, A.F.; Rossoni, A.L.; Magalhães, C.A.S.; Ituassu, D.R.; Hoogerheide, E.S.S.; Ikeda, F.S.; Fernandes Junior, F.; Faria, G.R.; Isernhagen, I.; Vendrusculo, L.G.; Morales, M.M.; Carnevalli, R.A. (Orgs.), Embrapa Agrossilvipastoril: primeiras contribuições para o desenvolvimento de uma agropecuária sustentável. Embrapa Agrossilvipastoril, Brasília, pp. 47-51.

Triplehorn, C.A.; Johnson, N.F. Estudo dos insetos. 2. ed. Cengage Learning, São Paulo, 2015.

Valente, G.F.; Silva, V.F.A.; Da Silva, J.N.; Pinto, D.R.S.; Galvão, J.R., 2019. Resistência mecânica à penetração em sistemas de manejo do solo. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v. 14, (1), 140. https://doi.org/10.18378/rvads.v14i1.5892

Velazco, V.N.; Saravia, L.A.; Coviella, C.E.; Falco, L.B., 2022. Trophic resources of the edaphic microarthropods: a worldwide review of the empirical evidence. bioRxiv, 2021.02. https://doi.org/10.1101/2021.02.06.430061

Vieira, S.R.; Hatfield, J.L.; Nielsen, D.R.; Biggar, J.W., 1983. Geoestatistical theory and application to variability of some afronomical Properties. Hilgardia, v. 51, (3), 1-75. https://doi.org/10.3733/hilg.v51n03p075

Wang, M.; Zhang, W.; Xia, H.; Huang, J.; Wu, Z.; Xu, G., 2017. Effect of Collembola on mineralization of litter and soil organic matter. Biology and Fertility of Soils, v. 53, (5), 563-571. https://doi.org/10.1007/s00374-017-1200-6

Zeiss, C., 2017. Micro Imaging GmbH, AxioVision 4.9. Göttingen, Deutschland.

Downloads

Published

2024-06-17

How to Cite

Narciso, N. B., Pompeo, P. N., Baretta, D., Rezende, R. de S., & Baretta, C. R. D. M. (2024). Spatial variability of edaphic attributes on Coleoptera (Insecta) in land use systems. Revista Brasileira De Ciências Ambientais, 59, e1704. https://doi.org/10.5327/Z2176-94781704

More articles by the same author(s)