Methodology for IDF equation based on reduced pluviograph records

Authors

DOI:

https://doi.org/10.5327/Z2176-94781652

Keywords:

intense rainfall; sub-daily rainfall; annual maximum daily rainfall.

Abstract

In the climate change scenario, extreme rainfall events are increasing in significance and frequency. It is essential to estimate the maximum precipitation intensity for designing hydraulic-hydrological structures, such as macrodrainage. Thus, this study makes a comparison between disaggregation coefficients and forms of the intense rainfall equation to determine an Intensity, Duration and Frequency (IDF) equation for Barcarena-PA. The rainfall historical series available in the Hidroweb database extends between 1981 and 2018. The Gumbel distribution presents the best fit in the return periods: 2, 5, 10, 50, 100, 200 and 1000 years, by the following tests: Filliben, Variance and Kolmogorov-Smirnov. The disaggregation of 1-day precipitation into shorter durations was done in two ways: using disaggregation coefficients recommended by the literature, as well as local disaggregation coefficients. For the construction of the IDF equation, two frequently used representations were considered: the first based on the determination of the coefficients: K, a, b and c; and the second, described in the Pluviometric Atlas of Brazil (APB), determines the coefficients: A, B, C, D and δ. The results indicated that the use of local disaggregation coefficients, in this case DCBarcarena, with adjustment coefficient R2=0.9945, together with the use of the equation described in the APB, provides the best fit, R2=0.9998, to historical data. When compared with other IDF equations from Barcarena-PA, the previous finding is clear in terms of underestimating the intensity values. Thus, the methodology presented here can be extended to locations with reduced sub-daily rainfall records associated with large annual maximum daily rainfall records.

Downloads

Download data is not yet available.

References

Abreu, M.C., 2018. Desempenho de métodos de desagregação de chuvas intensas. Doctoral Thesis, Universidade Federal de Viçosa, Viçosa. Retrieved 2022-11-21, from https://locus.ufv.br//handle/123456789/19141

Abreu, M.C.; Cecílio, R.A.; Pruski, F.F.; Almeida, L.T.; Santos, G.R.; Zanetti, S.S.; Pereira, S.B.; Silva, D.D., 2022a. Daily Rainfall Disaggregation to Estimate the Intensity-Duration-Frequency Relationship in Minas Gerais State, Brazil. Brazilian Archives of Biology and Technology, v. 65, e20210694. https://doi.org/10.1590/1678-4324-2022210694

Abreu, M.C.; Pereira, S.B.; Cecílio, R.A.; Pruski, F.F.; Almeida, L.T.; Silva, D.D., 2022b. Assessing the application of ratios between daily and sub-daily extreme rainfall as disaggregation coefficients. Physics and Chemistry of the Earth, Parts A/B/C, v. 128, 1-12. https://doi.org/10.1016/j.pce.2022.103223

AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO (ANA), 2022. Hidroweb – Sistemas de Informações Hidrológicas (Accessed August 28, 2022) at:. http://hidroweb.ana.gov.br

Back, Á.J.; Bonfante, F.M., 2021. Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 56, (4), 1-11. https://doi.org/10.5327/Z217694781015

Back, Á.J.; Cadorin, S.B, 2020. Chuvas extremas e equações intensidade-duração-frequência para o estado do Acre. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 55, (2), 159-170. https://doi.org/10.5327/Z2176-947820200597

Campos, A.R.; Santos, G.G.; Silva, J.B.L.; Irene Filho, J.; Loura, D.S., 2014. Equações de intensidade-duração-frequência de chuvas para o estado do Piauí. Revista Ciência Agronômica, v. 45, (3), 488-498. https://doi.org/10.1590/s1806-66902014000300008

Cardoso, C.O.; Bertol, I.; Soccol, O.J.; Sampaio, C.A.P., 2014. Generation of intensity duration frequency curves and intensity temporal variability pattern of intense rainfall for Lages/SC. Brazilian Archives of Biology and Technology, v. 57, (2), 274-283. https://doi.org/10.1590/S1516-89132013005000014

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL (CETESB), 1979. Drenagem Urbana: Manual de Projeto. [s.n.], São Paulo.

COSTA, K.; FERNANDES, W., 2015. Avaliação do tipo de distribuição de probabilidades das vazões máximas diárias anuais no Brasil. Revista Brasileira de Recursos Hídricos, v. 20, (2), 442-451. ISSN 2318-0331

Damé, R.C.F.; Teixeira-Gandra, C.F.A.; Villela, F.A.; Santos, J.P.; Winkler, A.S., 2014. Analysis of the relationship intensity, duration, frequency of disaggregated daily rainfall in Southern Rio Grande do Sul, Brazil. Engenharia Agrícola, v. 34, (4), 660-670. https://doi.org/10.1590/S0100-69162014000400006

Damé, R.C.F.; Teixeira, C.F.A.; Terra, V.S.S., 2008. Comparação de diferentes metodologias para estimativa de curvas intensidade-duração-frequência para Pelotas - RS. Engenharia Agrícola, v. 28, (2), 245-255. https://doi.org/10.1590/S0100-69162008000200005

Dias, É.C.; Penner, G.C., 2019. Accounting of intensity-duration-frequency equations available in Brazil. Anuario do Instituto de Geociencias, v. 42, (1), 209-216. https://doi.org/10.11137/2019_1_209_216

Dorneles, V.R.; Damé, R.C.F.; Méllo, C.F.A.; Teixeira-Gandra, C.F.A.; Ramirez, M.A.A.; Manke, E.B., 2019a. Intensity-duration-frequency relationships of rainfall through the technique of disaggregation of daily rainfall. Revista Brasileira de Engenharia Agricola e Ambiental, v. 23, (7), 506-510. https://doi.org/10.1590/1807-1929/agriambi.v23n7p506-510

Dorneles, V.R.; Damé, R.C.F.; Teixeira-Gandra, C.F.A.; Veber, P.M.; Klumb, G.B.; Ramirez, M.A.A., 2019b. Modeling of probability in obtaining intensity-duration-frequency relationships of rainfall occurrence for Pelotas, RS, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 23, (7), 499-505. https://doi.org/10.1590/1807-1929/agriambi.v23n7p499-505

Fadhel, S.; Al Aukidy, M.; Saleh, M.S., 2021. Uncertainty of intensity-duration-frequency curves due to adoption or otherwise of the temperature climate variable in rainfall disaggregation. Water (Switzerland), v. 13, (17), 2337. https://doi.org/10.3390/w13172337

Fadhel, S.; Rico-Ramirez, M.A.; Han, D., 2017. Uncertainty of Intensity–Duration–Frequency (IDF) curves due to varied climate baseline periods. Journal of Hydrology, v. 547, 600-612. https://doi.org/10.1016/j.jhydrol.2017.02.013

Farias, C.P.C.; Burin, A.; Weschenfelder, K.P.; Pinto, E.J.A., 2018. Atlas Pluviométrico do Brasil: Equações Intensidade-DuraçãoFrequência (Desagregação de Precipitações Diárias); município: Barcarena; Estação Pluviométrica: Vila do Conde, Código 00148011. CPRM, Belém.

Faridzad, M.; Yang, T.; Hsu, K.; Sorooshian, S.; Xiao, C., 2018. Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information. Journal of Hydrology, v. 563, June, 123-142. https://doi.org/10.1016/j.jhydrol.2018.05.071

Fendrich, R., 2003. Chuvas intensas para obras de drenagem no estado do Paraná. 2. ed. Vicentina, Curitiba.

G1 PA, 2018. Relatório de CPI com recomendações sobre prejuízos ambientais em Barcarena, no PA, é aprovado na Alepa (Accessed September 04, 2023) at:. https://g1.globo.com/pa/para/noticia/2018/12/04/relatorio-de-cpi-com-recomendacoes-sobre-prejuizos-ambientais-em-barcarena-no-pa-e-aprovado-na-alepa.ghtml

Gao, L.; Huang, J.; Chen, X.; Chen, Y.; Liu, M., 2017. Risk of extreme precipitation under nonstationarity conditions during the second flood season in the Southeastern Coastal Region of China. Journal of Hydrometeorology, v. 18, (3), 669-681. https://doi.org/10.1175/JHM-D-16-0119.1

Martins, D.; Gandini, M.L.T.; Kruk, Na.S.; Queiroz, P.I.B., 2019. Disaggregation of daily rainfall data for the caraguatatuba city, in São Paulo State, Brazil. Revista Brasileira de Recursos Hídricos, v. 24, 1-8. https://doi.org/10.1590/2318-0331.241920180100

Monte, B.E.O.; Costa, D.D.; Chaves, M.B.; Magalhães, L.O.; Uvo, C.B., 2016. Modelagem hidrológica e hidráulica aplicada ao mapeamento de áreas inundáveis. Revista Brasileira de Recursos Hídricos, v. 21, (1), 152-167. https://doi.org/10.21168/rbrh.v21n1.p152-167

Naghettini, M.; Pinto, E.J.A., 2007. Hidrologia estatística. CPRM, Belo Horizonte.

Nunes, A.A.; Pinto, E.J.A.; Baptista, M.B.; Paula, M.H.; Xavier, M.O., 2021. Intensity-duration-frequency curves in the municipality of Belo Horizonte from the perspective of non-stationarity. Revista Brasileira de Recursos Hídricos, v. 26, 1-14. https://doi.org/10.1590/2318-0331.262120210017.

Oliveira, M.C.; Naghettini, M., 2008. SEAF - A prototype of an expert system for at-site frequency analysis of hydrological annual maxima. Avances en Recursos Hidráulicos, (18), 37-56 (Accessed December 01, 2022) at:. https://www.redalyc.org/articulo.oa?id=145012856004

Passos, J.B.; Silva, D.D.; Lima, R.P.C., 2021. Daily rainfall disaggregation coefficients for the Doce River Basin, Brazil: regional applicability and the return period influence. Engenharia Agrícola, v. 41, (2), 223-234. https://doi.org/10.1590/1809-4430-ENG.AGRIC.V41N2P223-234/2021

Pereira, S.B.; Nóia, C.P.Z.; Almeida, R.A.; Coelho, C.D., 2014. Method adjustment and equation set of maximum rainfall intensity, duration and frequency in the mato grosso do sul state. Engenharia Agricola, v. 34, (4), 716-726. https://doi.org/10.1590/S0100-69162014000400011

Pinto, E.J.A., 2013. Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico. CPRM, Belo Horizonte.

Pinto, F.A., 1995. Chuvas intensas no Estado de Minas Gerais: análises e modelos. Master Thesis, Universidade Federal de Viçosa, Viçosa.

Pinto, F.R.L., 1999. Equações de intensidade-duração-frequência da precipitação para os Estados do Rio de Janeiro e Espírito Santo: Estimativa e especialização. Graduation Project, Universidade Federal de Viçosa, Viçosa.

Qamar, M.U.; Azmat, M.; Shahid, M.A.; Ganora, D.; Ahmad, S.; Cheema, M.J.M.; Faiz, M.A.; Sarwar, A.; Shafeeque, M.; Khan, M.I., 2017. Rainfall extremes: a novel modeling approach for regionalization. Water Resources Management, v. 31, (6), 1975-1994. https://doi.org/10.1007/s11269-017-1626-5

Silva, D.D.; Gomes Filho, R.R.; Pruski, F.F.; Pereira, S.B.; Novaes, L.F., 2002. Chuvas intensas no Estado da Bahia. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 6, (2), 362-367. https://doi.org/10.1590/s1415-43662002000200030

Silva, D.D.; Pereira, S.B.; Pruski, F.F.; Gomes Filho, R.R.; Lana, A.M.Q.; Baena, L.G.N., 2003. Equações de intensidade-duração-frequência da precipitação pluvial para o estado de Tocantins. Engenharia na Agricultura, v. 11, (31), 7-14.

Sousa, F.R.C.; Paula, D.P., 2018. Uso da equação de intensidade-duração-frequência de chuvas para bacia do rio Coreaú (Ceará, Brasil). Revista Eletrônica do PRODEMA, v. 12, (1), 96-109. https://doi.org/10.22411/rede2018.1201.09

Souza, R.O.R.M.; Scaramussa, P.H.M.; Amaral, M.A.C.M.; Pereira Neto, J.A.; Pantoja, A.V.; Sadeck, L.W.R., 2012. Intense rainfall equations for the State of Pará, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 16, (9), 999-1005. https://doi.org/10.1590/S1415-43662012000900011

Teodoro, P.E.; Neivock, M.P.; Franco Marques, J.R.; Fernandes Flores, A.M.; Braga, C., 2014. Influência de diferentes coeficientes de desagregação na determinação de equações IDF para Aquidauana/MS. REEC - Revista Eletrônica de Engenharia Civil, v. 9, (2), p. 1-9. https://doi.org/10.5216/reec.v9i2.28701

Villela, S.M.; Mattos, A., 1975. Hidrologia aplicada. McGraw Hill do Brasil, São Paulo.

Willmott, C.J., 1981. On the validation on models. Physical Geography, v. 2, (2), 184-194. https://doi.org/10.1080/02723646.1981.10642213

Downloads

Published

2023-11-22

How to Cite

Penner, G. C., Wendland, E., Gonçalves, M. M., & Adam, K. N. (2023). Methodology for IDF equation based on reduced pluviograph records. Revista Brasileira De Ciências Ambientais, 58(3), 365–374. https://doi.org/10.5327/Z2176-94781652