Reuse of effluents from cattle slaughterhouses: multicriteria evaluation

Authors

DOI:

https://doi.org/10.5327/Z2176-94781624

Keywords:

agricultural reuse; ELECTRE I method; effluent quality; treatment technologies; environmental sustainability

Abstract

Cattle slaughterhouses generate a large amount of effluent with a high concentration of organic and inorganic compounds. However, the choice of appropriate technologies can produce effluents with sufficient quality for the practice of reuse as a strategy for saving water. This study aimed to determine the efficiency of effluent treatment systems from cattle slaughterhouses to promote the reuse of effluents, specifically for fertigation. The multicriteria analysis was employed, adopting the ELECTRE I method. The effluent treatment alternatives, the definition of the degree of importance, and the weights of each established criterion were considered. The estimated volume of effluents generated in slaughterhouses in Brazil was 85.374 million m³/year, with a high concentration of biochemical/chemical oxygen demand, nutrients, oils, and greases, solids, and E. coli. The treatment technologies that showed the best performance were UASB reactor + ultrafiltration and activated sludge + ultrafiltration, producing effluents with compatible quality for agricultural reuse under Brazilian legislation.

Downloads

Download data is not yet available.

References

Adou, K.E.; Alle, O.E.; Kouakou, A.R.; Adouby, K.; Drogui, P.; Tyagi, R.D., 2020. Anaerobic mono-digestion of wastewater from the main slaughterhouse in Yamoussoukro (Côte d’Ivoire): Evaluation of biogas potential and removal of organic pollution. Journal of Environmental Chemical Engineering, v. 8, (3), 103770. https://doi.org/10.1016/j.jece.2020.103770.

Akhoundi, A.; Nazif, S., 2018. Sustainability assessment of wastewater reuse alternatives using the evidential reasoning approach. Journal of Cleaner Production, 195, 1350-1376. https://doi.org/10.1016/j.jclepro.2018.05.220.

Bertolossi, V.M., Neder, T.F.; Brandão, C.C.S., 2021. Avaliação de ultrafiltração como alternativa à flotação por ar dissolvido no pós-tratamento do efluente de lodos ativados-estudo em escala piloto na estação de tratamento de esgoto Brasília Norte. Engenharia Sanitaria e Ambiental, v. 26, (6), 1003-1014. https://doi.org/10.1590/S1413-415220190210.

Brasil, 2010. Ministério do Meio Ambiente. Conselho Nacional de Recursos Hídricos. Resolução nº 121 de 16/12/2010. Estabelece diretrizes e critérios para a prática de reúso direto não potável de água na modalidade agrícola e florestal, definida na Resolução CNRH nº 54, de 28 de novembro de 2005 (Accessed December 5, 2022) at:. https://www.ceivap.org.br/ligislacao/Resolucoes-CNRH/Resolucao-CNRH%20121.pdf.

Brasil, 2011. Conselho Nacional do Meio Ambiente. Resolução Nº 430, de 13/05/2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução Nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente (Accessed December 5, 2022) at:. https://www.gov.br/mma/pt-br.

Brasil, 2021. Conselho Nacional do Meio Ambiente. Define critérios e procedimentos para o reúso em sistemas de fertirrigação de efluentes provenientes de indústrias de alimentos, bebidas, laticínios, frigoríficos e graxarias. Resolução nº 503, de 12 de dezembro de 2021. (Accessed December 5, 2022) at:. https://www.in.gov.br/en/web/dou/-/resolucao-conama-n-503-de-14-de-dezembro-de-2021-367783680.

Brooms, T.; Apollo, S.; Otieno, B.; Onyango, M. S.; Kabuba, J.; Ochieng, A., 2020. Integrated anaerobic digestion and photodegradation of slaughterhouse wastewater: Energy analysis and degradation of aromatic compounds. Journal of Material Cycles and Waste Management, v. 22, 1227-1236. https://doi.org/10.1007/s10163-020-01019-0.

Bustillo-Lecompte, C.F.; Mehrvar, M., 2015. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management, v. 161, 287-302. https://doi.org/10.1016/j.jenvman.2015.07.008.

Chen, Z.; Wu, Q.; Wu, G.; Hu, H.Y., 2017. Centralized water reuse system with multiple applications in urban areas: Lessons from China’s experience. Resources, Conservation and Recycling, v. 117, (part B), 125-136. https://doi.org/10.1016/j.resconrec.2016.11.008.

Craddock, H.A.; Rjoub, Y.; Jones, K.; Lipchin, C.; Sapkota, A.R., 2021. Perceptions on the use of recycled water for produce irrigation and household tasks: A comparison between Israeli and Palestinian consumers. Journal of Environmental Management, v. 297, 113234. https://doi.org/10.1016/j.jenvman.2021.113234.

Cristovão, R.O.; Botelho, C.; Martins, R.; Loureiro, J.; Boaventura, R., 2015. Fish canning industry wastewater treatment for water reuse e a case study. Journal of Cleaner Production, v. 87, 603-612. https://doi.org/10.1016/j.jclepro.2014.10.076.

De Melo Ribeiro, F.R.; Naval, L.P., 2019. Reuse Alternatives for Effluents from the Fish Processing Industry through Multi-Criterion Analysis. Journal of Cleaner Production, v. 227, 336-345. https://doi.org/10.1016/j.jclepro.2019.04.110.

Elsaidy, N.R.; Elleboudy, N.S.; Alkhedaide, A.; Abouelenien, F.A.; Abdelrahman, M.H.; Soliman, M.M.; Shukry, M., 2022. Enhancement Effects of Water Magnetization and/or Disinfection by Sodium Hypochlorite on Secondary Slaughterhouse Wastewater Effluent Quality and Disinfection By-Products. Processes, v. 10, (8), 1589. https://doi.org/10.3390/pr10081589.

Farzadkia, M.; Vanani, A.F.; Golbaz, S.; Sajadi, H.S.; Bazrafshan, E., 2016. Characterization and evaluation of treatability of wastewater generated in Khuzestan livestock slaughterhouses and assessing of their wastewater treatment systems. Global Nest Journal, v. 18, (1), 108-118.

Graça, C.A.L.; Ribeirinho-Soares, S.; Abreu-Silva, J.; Ramos, I.I.; Ribeiro, A.R.; Castro-Silva, S.M.; Segundo, M.A.; Manaia, C.M.; Nunes, O.C.; Silva, A.M.T., 2020. A Pilot Study Combining Ultrafiltration with Ozonation for the Treatment of Secondary Urban Wastewater: Organic Micropollutants, Microbial Load and Biological Effects. Water, v. 12, (12), 3458. https://doi.org/10.3390/w12123458.

Gürel, L.; Büyükgüngör, H., 2011. Treatment of slaughterhouse plant wastewater by using a membrane bioreactor. Water Science and Technology, v. 64, (1), 214-219. https://doi.org/10.2166/wst.2011.677.

Habip, N.; Başaran, Y.; Özüdoğru, A.; Özdemir, O.; Altun, O.; Karaaslan, Y.; Dikmen, B., 2020. Evaluation of Reuse of Wastewater in Agriculture in Turkey: Outbreak Perspective of Covid-19. Turkish Journal of Water Science and Management, v. 4, (2), 178-192. https://doi.org/10.31807/tjwsm.748590.

Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Tarantino, E., 2018. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agricultural Water Management, v. 196, 1-14. https://doi.org/10.1016/j.agwat.2017.10.015.

Ling, J.; Germain, E.; Murphy, R.; Saroj, D., 2021. Designing a sustainability assessment framework for selecting sustainable wastewater treatment technologies in corporate asset decisions. Sustainability, v. 13, (7), 3831. https://doi.org/10.3390/su13073831.

Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A.G., 2022. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. Environmental Pollution, v. 296, 118755. https://doi.org/10.1016/j.envpol.2021.118755.

McCabe, B.K.; Hamawand, I.; Harris, P.; Baillie, C.; Yusaf, T., 2014. A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production. Applied Energy, v. 114, 798-808. https://doi.org/10.1016/j.apenergy.2013.10.020.

Metcalf, L.; Eddy, H.P.; Tchobanoglous, G., 2004. Wastewater Engineering Treatment Disposal Reuse. 4. ed. New York, McGraw - Hill Book, 1815 p.

Michetti, M.; Raggi, M.; Guerra, E.; Viaggi, D., 2019. Interpreting farmers’ perceptions of risks and benefits concerning wastewater reuse for irrigation: a case study in Emilia-Romagna (Italy). Water, v. 11, (1), 108. https://doi.org/10.3390/w11010108.

Mittal, G.S., 2006. Treatment of wastewater from abattoirs before land application—a review. Bioresource Technology, v. 97, (9), 1119-1135. https://doi.org/10.1016/j.biortech.2004.11.021.

Nacheva, P.M.; Pantoja, M.R.; Serrano, E.L., 2011. Treatment of slaughterhouse wastewater in upflow anaerobic sludge blanket reactor. Water Science and Technology, v. 63, (5), 877-884. https://doi.org/10.2166/wst.2011.265.

Ng, M.; Dalhatou, S.; Wilson, J.; Kamdem, B.P.; Temitope, M.B.; Paumo, H.K.; Djelal, H.; Assadi, A.A.; Nguyen-Tri, P.; Kane, A., 2022. Characterization of Slaughterhouse Wastewater and Development of Treatment Techniques: A Review. Processes, v. 10, (7), 1300. https://doi.org/10.3390/pr10071300.

Organisation for Economic Co-operation and Development/Food and Agriculture Organization (OECD/FAO). Agricultural Outlook 2020-2029. Paris: OECD Publishing, https://doi.org/10.1787/1112c23b-en.

Pereira, E.L.; Paiva, T.C.B.; Silva, F.T., 2016. Physico-chemical and Ecotoxicological Characterization of Slaughterhouse Wastewater Resulting from Green Line Slaughter. Water Air Soil Pollution, v. 227, 199. https://doi.org/10.1007/s11270-016-2873-4.

Pérez-Castro, A.; Sánchez-Molina, J.A.; Castilla, M.; Sánchez-Moreno, J.; Moreno-Úbeda, J.C.; Magán, J.J., 2017. cFertigUAL: A fertigation management app for greenhouse vegetable crops. Agricultural Water Management, v. 183, 186-193. https://doi.org/10.1016/j.agwat.2016.09.013.

Queiroz, M.I.; Hornes, M.; Manetti, A.; Zepka, L.; Jacob-Lopes, L., 2013. Fish processing wastewater as a platform of the microalgal biorefineries. Biosystems Engineering, v. 115, (2), 195-202. https://doi.org/10.1016/j.biosystemseng.2012.12.013.

Roy, B., 1968. Classement et choix en présence de points de vue multiples. Revue Française D'informatique et de Recherche Opérationnelle, v. 2, (8), 57-75 (Accessed 23 December 2022) at:. http://www.numdam.org/item/RO_1968__2_1_57_0/.

Saaty, T.L., 1980. The Analytic Hierarchy Process. New York: McGraw-Hill International.

Senthilkumar, M.; Ganesh, S.; Srinivas, K.; Panneerselvam, P.; Nagaraja, A.; Kasinath, B.L., 2017. Fertigation for effective nutrition and higher productivity in banana-a review. International Journal of Current Microbiology and Applied Sciences, v. 6, (7), 2104-2122. https://doi.org/10.20546/ijcmas.2017.607.248.

Svierzoski, N.D.S.; Matheus, M.C.; Bassin, J.P.; Brito, Y.D.; Mahler, C.F.; Webler, A.D., 2021. Treatment of a slaughterhouse wastewater by anoxic-aerobic biological reactors followed by UV-C disinfection and microalgae bioremediation. Water Environment Research, v. 93, (3), 409-420. https://doi.org/10.1002/wer.1435.

Takeuchi, H.; Tanaka, H., 2020. Water reuse and recycling in Japan History, current situation, and future perspectives. Water Cycle, v. 1, 1-12. https://doi.org/10.1016/j.watcyc.2020.05.001.

Um, M.M.; Barraud, O.; Kérourédan, M.; Gaschet, M.; Stalder, T.; Oswald, E.; Bibbal, D., 2016. Comparison of the incidence of pathogenic and antibiotic-resistant Escherichia coli strains in adult cattle and veal calf slaughterhouse effluents highlighted different risks for public health. Water Research, v. 88, 30-38. https://doi.org/10.1016/j.watres.2015.09.029.

U.S. Department of Agriculture (USDA), 2023. U.S. Department of Agriculture. Ranking of Countries that Produce the most Beef (USDA (Accessed in July 2023) at:. https://beef2live.com/story-world-beef-production-ranking-countries-0-106885.

Valta, K.; Kosanovic, T.; Malamis, D.; Moustakas, K.; Loizidou, M., 2015. Overview of water usage and wastewater management in the food and beverage industry. Desalination and Water Treatment, v. 53, (12), 3335-3347. https://doi.org/10.1080/19443994.2014.934100.

Wilcox, J.; Nasiri, F.; Bell, S.; Rahaman, M., 2016. Urban water reuse: a triple bottom line assessment framework and review. Sustainable Cities and Society, v. 27, 448-456. https://doi.org.10.1016/j.scs.2016.06.021.

Yordanov, D., 2010. Preliminary study of the efficiency of ultrafiltration treatment of poultry slaughterhouse wastewater. Bulgarian Journal of Agricultural Science, v. 16, (6), 700-704. http://www.agrojournal.org/16/06-06-10.pdf.

Ziara, R.M.; Li, S.; Subbiah, J.; Dvorak, B.I., 2018. Characterization of wastewater in two US cattle slaughterhouses. Water Environment Research, v. 90, (9), 851-863. https://doi.org/10.2175/106143017x15131012187971.

Downloads

Published

2023-08-31

How to Cite

Oliveira, T. D. de, Nepomuceno, D. C. F., & Naval, L. P. (2023). Reuse of effluents from cattle slaughterhouses: multicriteria evaluation. Revista Brasileira De Ciências Ambientais, 58(2), 203–211. https://doi.org/10.5327/Z2176-94781624