Estimative of reference flows for water resources planning and control: hydrologic regional indicators application
DOI:
https://doi.org/10.5327/Z2176-94781598Keywords:
regionalization; indicators; droughts; floods; Manhuaçu River.Abstract
Due to limitations of hydrometeorological monitoring network related to spatial station distribution and extension of historical series, tools that aim to improve consistency and optimize available data analysis have become essential. In this context, regionalization techniques stand out, once the main focus is the delimitation of hydrologically homogeneous regions with the subsequent spatial transposition of hydrological variables of interest. Regional indicators, defined as the mean values of hydrological variables and characteristics of a homogeneous region, constitute an expeditious approach to hydrological regionalization. The main perspective of the study was to evaluate the use of regional indicators when quantifying reference flows associated with average flow, drought, or flood conditions. The study area selected was the Manhuaçu River basin, a major Doce River tributary, located in the state of Minas Gerais, Brazil. The results showed that the regional indicators allow estimates of diverse reference flows with mean errors lower than 30%, considered satisfactory for the study area. However, the conventional method of flow regionalization presented more consistent results, with mean errors usually lower than 20%, regardless of the reference flow analyzed. It was also observed that adopting historical flow series with varied extensions did not produce relevant differences when appropriating the diverse reference flows for the Manhuaçu River basin, with none exceeding 3%.
Downloads
References
Agência Nacional de Águas e Saneamento Básico (ANA), 2021. Consolidação do estado da arte sobre a situação e a gestão de recursos hídricos na bacia – PP03. Brasília: ANA.
Althoff, D.; Ribeiro, R.B.; Rodrigues, L.N., 2021. Gauging the ungauged: Regionalization of flow indices at grid level. Journal of Hydrologic Engineering, v. 26, (4), 04021008. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002067.
Amorim, J.S.; Junqueira, R.; Mantovani, V.A.; Viola, M.R.; Mello, C.R.; Bento, N.L., 2020. Streamflow regionalization for the Mortes River Basin upstream from the Funil Hydropower Plant, MG. Revista Ambiente & Água, v. 15, (3), e2495. https://doi.org/10.4136/ambi-agua.2495.
Baena, L.G.N.; Silva, D.D.; Pruski, F.F.; Calijuri, M.L., 2004. Regionalização de vazões com base em modelo digital de elevação para a bacia do rio Paraíba do Sul. Engenharia Agrícola, v. 24, (3), 612-624. https://doi.org/10.1590/S0100-69162004000300013.
Bárdossy, A., 2007. Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences Discussions, v. 11, (2), 703-710. https://doi.org/10.5194/hess-11-703-2007.
Bazzo, K.R.; Guedes, H.A.S.; Castro, A.S., Siqueira, T.M.; Teixeira-Gandra, C.F.A., 2017. Regionalização da vazão Q95: comparação de métodos para a bacia hidrográfica do Rio Taquari-Antas, RS. Revista Ambiente & Água, v. 12, (5), 855-870. https://doi.org/10.4136/ambi-agua.2032.
Boscarello, L.; Ravazzani, G.; Cislaghi, A.; Mancini, M., 2016. Regionalization of flow-duration curves through catchment classification with streamflow signatures and physiographic-climate indices. Journal of Hydrologic Engineering, v. 21, (3), 05015027. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001307.
Brasil. Presidência da República, 1997. Lei nº 9.433, de 8 de janeiro de 1997. Diário Oficial União.
Brazilian Institute of Geography and Statistics (IBGE), 2021. Population (Accessed October 13, 2021) at:. https://www.ibge.gov.br/estatisticas/sociais/populacao.html.
Calmon, A.P.S.; Souza, J.C.; Reis, J.A.T.D.; Mendonça, A.S.F., 2016. Combined use of river water quality flow-duration curves and modeling as a tool to support class definition according to conama 357/2005 regulation. Revista Brasileira de Recursos Hídricos, v. 21, (1), 118-133. https://doi.org/10.21168/rbrh.v21n1.p118-133.
Centrais Elétricas Brasileira (Eletrobras), 1985. Metodologia para regionalização de vazões. Rio de Janeiro: Eletrobras.
Dutra, W.C.P.; Fia, R.; Ribeiro, C.B.M., 2022. Water quality modeling in the Paraibuna River in Juiz de Fora/MG: diagnosis and prognosis. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 57, (2), 256-267. https://doi.org/10.5327/Z2176-94781288.
Golian, S.; Murphy, C.; Meresa, H., 2021. Regionalization of hydrological models for flow estimation in ungauged catchments in Ireland. Journal of Hydrology: Regional Studies, v. 36, 100859. https://doi.org/10.1016/j.ejrh.2021.100859.
Gomes, D.J.C.; Nascimento, M.M.M.; Pereira, F.M.; Dias, G.F.M.; Meireles, R.R., Souza, L.G.N.; Picanço, A.R.S.; Ribeiro, H.M.C., 2022. Flow variability in the Araguaia River Hydrographic Basin influenced by precipitation in extreme years and deforestation. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 57, (3), 451-466. https://doi.org/10.5327/Z2176-94781358.
Instituto Estadual de Gestão das Águas de Minas Gerais (Igam), 2019. Portaria nº 48, de 4 de outubro de 2019, CONAMA nº 357, de 17 de março de 2005. Diário Executivo, Minas Gerais.
Kite, G.W., 1988. Frequency and risk analyses in hydrology. 5. ed. Highlands Ranch, Colorado: Water Resources Publications, 257 p.
Lall, U.; Olds, J., 1987. A parameter estimation model for ungagged streamflows. Journal of Hydrology, v. 92, (3-4), 245-262. https://doi.org/10.1016/0022-1694(87)90016-3.
Lira, F.A.; Cardoso, A.O., 2018. Estudo de tendência de vazões de rios das principais bacias hidrográficas brasileiras. Brazilian Journal of Environmental Sciences (RBCIAMB), (48), 21-37. https://doi.org/10.5327/Z2176-947820180273.
Maciel, A.L.; Vieira, E.M.; Monte Mor, R.C.; Vasques, A.C., 2019. Regionalização e espacialização de vazões de permanência: estudo aplicado na bacia rio Piracicaba-MG. Revista Brasileira de Climatologia, v. 24, (1), 114-133. https://doi.org/10.5380/abclima.v24i0.58420.
Mendonça, A.S.F., 2003. Introdução – Razões para quantificação. In: Paiva, J.B.D.; Paiva, E.M.C.D. (eds.), Hidrologia aplicada à gestão de pequenas bacias hidrográficas. Porto Alegre: ABRH, p. 32.
Moreira, M.C.; Silva, D.D., 2014. Análise de Métodos para Estimativa das Vazões da Bacia do Rio Paraopeba. Revista Brasileira de Recursos Hídricos, v. 19, (2), 313-324. https://doi.org/10.21168/rbrh.v19n2.p313-324
Mwakalila, S., 2003. Estimation of stream flows of ungauged catchments for river basin management. Physics and Chemistry of the Earth, v. 28, (20-27), 935-942. https://doi.org/10.1016/j.pce.2003.08.039.
National Agency for Water and Basic Sanitation, 2023. Hidroweb Portal (Accessed September 19, 2022) at:. https://www.snirh.gov.br/hidroweb/.
Novaes, L.F.; Pruski, F.F.; Queiroz, D.O.; Del Giudice Rodriguez, R.; Silva, D.D.; Ramos, M.M., 2007. Avaliação do desempenho de cinco metodologias de regionalização de vazões. Revista Brasileira de Recursos Hídricos, v. 12, (2), 51-61. https://doi.org/10.21168/rbrh.v12n2.p51-61.
O’Gorman, P.A., 2015. Precipitation extremes under climate change. Current Climate Change Reports, v. 1, 49-59, 2015. https://doi.org/10.1007/s40641-015-0009-3.
Pessoa, F.C.L.; Blanco, C.J.C.; Martins, J.R., 2011. Regionalização de Curvas de Permanência de Vazões da Região da Calha Norte no Estado do Pará. Revista Brasileira de Recursos Hídricos, v. 16, (2), 65-74. https://doi.org/10.21168/rbrh.v16n2.p65-74.
Pinto, J.A.O., 2006. Avaliação de métodos para a regionalização de curvas de permanência de vazões para a bacia do rio das Velhas. Dissertação (Mestrado) – Curso de Saneamento, Meio Ambiente e Recursos Hídricos, Universidade Federal de Minas Gerais, Belo Horizonte, 242p.
Piol, M.V.A., 2017. Análise regional de curvas de permanência e de curvas de probabilidade de vazões mínimas – Avaliação do desempenho de diferentes métodos de regionalização. Dissertação (Mestrado) – Curso de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, 228p.
Piol, M.V.A.; Reis, J.A.T.; Mendonça, A.S.F.; Caiado, M.A.C., 2019. Performance evaluation of Flow Duration Curves regionalization methods. Revista Brasileira de Recursos Hídricos, v. 24, e9. https://doi.org/10.1590/2318-0331.241920170202.
Qamar, M. .; Ganora, D.; Claps, P.; Azmat, M.; Shahid, M.A.; Khushnood, R.A., 2018. Flow duration curve regionalization with enhanced selection of donor basins. Journal of Applied Water Engineering and Research, v. 6, (1), 70-84. https://doi.org/10.1080/23249676.2016.1196621.
Razavi, T.; Coulibaly, P., 2013. Streamflow prediction in ungauged basins: review of regionalization methods. Journal of Hydrologic Engineering, v. 18, (8), 958-975. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690.
Reis, J.A.T.; Guimarães, M.A.; Barreto Neto, A.A.; Bringhenti, J., 2008. Indicadores Regionais Aplicáveis à Avaliação do regime de vazão dos cursos d’água da bacia hidrográfica do rio Itabapoana. Geociências, v. 27, (4), 509-516.
Rodrigues, M.B.; Reis, J.A.T.D.; Sá, G.D.L.N.; Almeida, K.N.; Mendonça, A.S.F., 2022. Perspectivas para revisão do enquadramento da bacia hidrográfica do Rio Benevente pelo emprego de curva de permanência e modelagem da qualidade da água. Engenharia Sanitária e Ambiental, v. 27, (4), 831-843. https://doi.org/10.1590/S1413-415220210295.
Silva, L.S.; Ferraz, L.L.; Sousa, L.F.; Silva Santos, C.A.; Rocha, F.A., 2022. Trend in hydrological series and land use changes in a tropical basin at Northeast Brazil. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 57, (1), 137-147. https://doi.org/10.5327/Z2176-94781097.
Silva, R.S.; Blanco, C.J.C.; Pessoa, F.C.L., 2019. Alternative for the regionalization of flow duration curves. Journal of Applied Water Engineering and Research, v. 7, (3), 198-206. https://doi.org/10.1080/23249676.2019.1611493.
Silva Junior, O.B.D.; Bueno, E.D.O.; Tucci, C.E.M.; Castro, N.M.D.R., 2003. Extrapolação espacial na regionalização da vazão Revista Brasileira de Recursos Hídricos, v. 8, (1), 21-37.
Singh, N.M.; Devi, T.T., 2022. Regionalization methods in ungauged catchments for flow prediction: review and its recent developments. Arabian Journal of Geosciences, v. 15, (11), 1019. https://doi.org/10.1007/s12517-022-10287-z.
Swain, J.B.; Patra, K.C., 2017. Streamflow estimation in ungauged catchments using regionalization techniques. Journal of Hydrology, v. 554, 420-433. https://doi.org/10.1016/j.jhydrol.2017.08.054.
Tabari, H., 2020. Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, v. 10, (1), 13768. https://doi.org/10.1038/s41598-020-70816-2.
Tucci, C.; Silveira, A.; Sanchez, J.; Albuquerque, F., 1995. Flow regionalization in the upper Paraguay basin, Brazil. Hydrological Sciences Journal, v. 40, (4), 485-497. https://doi.org/10.1080/02626669509491434.
Tucci, C.E.M., 2002. Regionalização de Vazões. Porto Alegre: ABRH/UFRGS, 256 p.
Tucci, C.E.M.; Clark, R.T.; Collischonn, W.; Dias, P.L.S.; Oliveira, G.S., 2003. Long‐term flow forecasts based on climate and hydrologic modeling: Uruguay River basin. Water Resources Research, v. 39, (7), SWC3-1. https://doi.org/10.1029/2003WR002074.
Wolff, W.; Duarte, S. N.; Mingoti, R., 2014. Nova metodologia de regionalização de vazões, estudo de caso para o Estado de São Paulo. Revista Brasileira de Recursos Hídricos, v. 19, (4), 21-33. https://doi.org/10.21168/rbrh.v19n4.p21-33.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.