Lightweight aggregate: a sustainable alternative for reuse of sawdust waste in the industrial process

Authors

DOI:

https://doi.org/10.5327/Z2176-94781555

Keywords:

recycling; building materials; sustainability; waste management.

Abstract

Sawdust generated by wood processing, both in industries processing and in tree felling, is a waste that has several applications for reuse, but, in many cases, it is still discarded irregularly in the environment, contaminating the soil, air, and water. The production of lightweight aggregate (LWA) can be an option for the reuse of this sawdust. The LWA is a gravel solution used in civil construction with the objective of reducing the weight of the structure, improving thermal and acoustic compliance, or as an option for locations where gravel is not available. In Brazil, and in most parts of the world, there are common clays available that can be used in the LWA production. The aim of this research was to produce an LWA for different applications, among them, as aggregate for civil construction, bricks, and as an adornment element. Formulations were tested to produce LWA containing illitic clay and sawdust. In the same way, for comparison, a commercial LWA was purchased, and formulations were made with clay and coal, and clay and fuel oil. The specimens were produced by pressing at 30 MPa in a cylindrical shape with a diameter of 19 mm and a height of 15 mm. After firing, the specimens were characterized by technological tests of water absorption, bulk density, compressive strength, X-ray diffraction analysis, and chemistry by X-ray fluorescence. The results indicated that the incorporation of sawdust in the formulations can be an alternative to produce LWA, once it obtained high strength and low density, compared to commercial LWA and to that produced with unattractive materials. Furthermore, it may contribute to the reduction of environmental impact, resulting from the disposal of sawdust and the generation of natural resources, necessary to produce construction materials.

Downloads

Download data is not yet available.

References

American Society for Testing and Materials (ASTM), 1992. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Organic Soils. ASTM D 2974-1992.

American Society for Testing and Materials (ASTM), 1998. Standard Test Method for Particle-Size Analysis of Soils. ASTM D422-63-1998.

American Society for Testing and Materials (ASTM), 2005. Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. ASTM C-20-2005.

American Society for Testing and Materials (ASTM), 2010a. Standard test method for Liquid Limit, Plastic limit, and plasticity index of soils. ASTM D4318.

American Society for Testing and Materials (ASTM), 2010b. Standard Practice for Use of Unbonded Caps in Determination of compressive Strength of Hardened Concrete Cylinders, ASTM C-1231.

Angelin, A.F.; Lintz, R.C.C.; Barbosa, L.A.G., 2017. Use of expanded clay and silica fume in improvement of mechanical, physical and thermal performances of structural lightweight concretes. Revista Matéria, v. 22, (Suppl. 1), e11938. https://doi.org/10.1590/s1517-707620170005.0276.

Araújo, C.; Salvador, R.; Piekarski, C.; Sokulski, C.; Francisco, A.; Camargo, S., 2019. Circular economy practices on wood panels: a bibliographic analysis. Sustainability, v. 11, (4), 1057. https://doi.org/10.3390/su11041057.

Araujo, K.S.; Fraiha, P.S., Barbosa, A.V.P.; Vinente, V.R.M.; Elgrably, S.P. 2022. Potencial de aplicação de resíduos de madeira oriundos do pó de serragem como material de construção. Meio Ambiente, Sustentabilidade e Tecnologia. Poseidon, v. 2, (27).

Arsenovic, M.; Pezo, L.; Mancic, L.; Radojevic, Z., 2014. Thermal and mineralogical characterization of loess heavy clays for potential use in brick industry. Thermochimica Acta, v. 580, 38-45. https://doi.org/10.1016/j.tca.2014.01.026

Associação Brasileira de Normas Técnicas (ABNT), 1984. Determinação do limite de liquidez de solos. NBR 7180. Rio de Janeiro, ABNT.

Associação Brasileira de Normas Técnicas (ABNT), 2016a. Determinação do índice de granulometria. NBR 7181. Rio de Janeiro, ABNT.

Associação Brasileira de Normas Técnicas (ABNT), 2016b. Determinação do limite de plasticidade de solos. NBR 6459. Rio de Janeiro, ABNT.

Ayati, B.; Molineux, C.; Newport, D.; Cheeseman, C. 2019. Manufacture and performance of lightweight aggregate from waste drill cuttings. Journal of Cleaner Production, v. 208, 252-260.

Bauer, L.A.F., 2019. Materiais de construção. 6ª ed. São Pauylo, LTC.

Benjeddou, O.; Alyousef, R., 2018. MATEC Web of Conferences 149, 01040. https://doi.org/10.1051/matecconf/201814901040.

Bose, S.; Das, C., 2015. Sawdust: From wood waste to pore-former in the fabrication of ceramic membrane. Ceramics International, v. 41, (3 Part A), 4070-4079. https://doi.org/10.1016/j.ceramint.2014.11.101.

Brasil, 2021 (Accessed July 2, 2022) at:. https://www12.senado.leg.br/noticias/tags/Ag%C3 %AAncia%20Senado.

Bruna, G.C.; Vizioli, S.H.T., 2006. Habitação social com tijolo de solo cimento, como elemento estruturador do desenvolvimento sustentável de João Dourado (BA). Brazilian Journal of Environmental Sciences (RBCIAMB), (4), 43-49.

Bundhoo, Z.M., 2018. Solid waste management in least developed countries: current status and challenges faced. Journal of Material Cycles and Waste Management, v. 20, (3), 1867-1877. https://doi.org/10.1007/s10163-018-0728-3.

Cabral, E.M.; Sá, R.J.; Vieira, R.K.; Vasconcelos, R.P., 2008. Use of ceramic bodies in the production of synthetic aggregate calcined clay for use in concrete. Cerâmica, v. 54, (332), 404-410. https://doi.org/10.1590/S0366-69132008000400004.

Cheeseman, C.R.; Makinde, A.; Bethanis, S., 2005. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash. Resources, Conservation and Recycling, v. 43, (2), 147-162. https://doi.org/10.1016/j.resconrec.2004.05.004.

Costa, G.; Sampaio, P.D.T.B.; Sá Ribeiro, R.A.; Soares, J.J.; Mendonça, R.M., 2022. Formulação de massa cerâmica para revestimento poroso utilizando resíduos de madeiras tropicais. Ciência Florestal, v. 32, (4), 2348-2371. https://doi.org/10.5902/1980509870383.

Cultrone, G.; Aurrekoetxea, I.; Casado, C.; Arizzi, A., 2020. Sawdust recycling in the production of lightweight bricks: How the amount of additive and the firing temperature influence the physical properties of the bricks. Construction Building, v. 235, 117436. https://doi.org/10.1016/j.conbuildmat.2019.117436.

Domagala, L., 2015. The effect of lightweight aggregate water absorption on the reduction of water-cement ratio in fresh concrete. Procedia Engineering, v. 108, 206-213. https://doi.org.10.1016/j.proeng.2015.06.139.

Domenec, V.; Sanches, E., 1994. Estimacion de la plasticidade de massas cerâmicas mediante la determinacion de la fuerza de identation. Spain, Qualicer.

Ekpunobi, U.E.; Agbo, S.U.; Ajiwe, V.I.E., 2019. Evaluation of the mixtures of clay, diatomite, and sawdust for production of ceramic pot filters for water treatment interventions using locally sourced materials. Journal of Environmental Chemical Engineering, v. 7, (1), 102791.

Ferreira, H.S.; Neves, G.D.A.; Ferreira, H.C.; Silva, M.C., 2001. Reciclagem de Resíduos Industriais Provenientes de Serragem de Granitos para uso na Composição de Massa para Confecção de Revestimentos Cerâmicos. Proceedings of the 45th Brazilian Congress of Ceramic (pp. 1-12).

Gil, H.; Ortega, A.; Pérez, J., 2017. Mechanical behavior of mortar reinforced with sawdust waste, Procedia Engineering, v. 200, 325-332. https://doi.org/10.1016/j.proeng.2017.07.046.

Ischia, M.; Maschio R.D.; Grigiante, M.; Baratieri, M., 2011. Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge. Waste Management, v. 31, (1), 71-77. https://doi.org/10.1016/j.wasman.2010.05.027.

Lira, D.S.; Oliveira Lima, D.; Molano, J.C.A.; Neto, J.D.C.M.; Moraes, I.C.F., 2020. Panorama da coleta dos resíduos sólidos no Brasil: Cenário da coleta da Coleta após 10 anos da política nacional dos resíduos sólidos. Centro, v. 4, 270.

Lo, T.Y.; Cui, H.; Memon, S.A.; Noguchi, T., 2016. Manufacturing of sintered lightweight aggregate using high-carbon fly ash and its effect on the mechanical properties and microstructure of concrete. Journal of Cleaner Production, v. 112, (part 1), 753-762. https://doi.org/10.1016/j.jclepro.2015.07.001.

Maestrelli, S.C.; Roveri, C.D.; Nunes A.; Faustino, L.M.; Aielo, G.F.; Pinto, L.P.A.; Manochio, C.; Cal, T.M.L.; Ribeiro, F.F.; Mariano, N.A., 2013. Estudo da caracterização de argilas não plásticas da região de poços de caldas. Cerâmica, v. 59, (350), 242-248. https://doi.org/10.1590/S0366-69132013000200008.

Mangi, S.A.; Jamaluddin, N.B.; Siddiqui, Z.; Memon, S.A.; Ibrahim, M.H.B.W., 2019. Utilization of Sawdust in Concrete Masonry Blocks: A Review. Mehran University Research Journal of Engineering & Technology, v. 38, (2), 487-494. https://doi.org/10.22581/muet1982.1902.23.

Mohammed, J.H.; Hamad, A.J., 2014. Materials, Properties and Application Review of Lightweight Concrete. Technical Review of the Faculty of Engineering University of Zulia, v. 37, 10-15.

Moon, D.H.; Kim, S.J.; Nam, S.W.; Cho, H.G., 2021. X-ray diffraction analysis of clay particles in ancient baekje black pottery: Indicator of the firing parameters. Minerals, v. 11, (11), 1239. https://doi.org/10.3390/min11111239

Moravia, W.G.; Oliveira, C.A.S.; Gumieri, A.G.; Vasconcelos, W.L., 2006. Microstructural evaluation of expanded clay to be used as lightweight aggregate in structural concrete. Cerâmica, v. 52, (332), 193-199. https://doi.org/10.1590/S0366-69132006000200012.

Mwango, A.; Kambole, C., 2019. Engineering characteristics and potential increased utilisation of sawdust composites in construction: a review. Journal of Building Construction and Planning Research, v. 7, (3), 59-88.

Neville, A.M., 1997. Propriedades do Concreto. São Paulo, PINI, 674 pp.

Oliveira, H.A.; Santos, C.P.; Oliveira, R.M.P.B.; Jesus, E.; Macedo, Z.S., 2019. Produção de agregado sintético de argila com reaproveitamento de resíduo de vidro. Revista Matéria, v. 24, (1), 1-11. https://doi.org/10.1590/s1517-707620190001.0653.

Pinto, L.S.D.; Matos, C.C.; Silva, M.L.F., 2016. Resíduos Sólidos de Madeira: aplicabilidade de resíduo de serragem de MDF em Design de ambiente. In: Anais do 12º Congresso Brasileiro de Pesquisa e Desenvolvimento em Design, v. 2, (9), 4253-4262. https://doi.org/10.5151/despro-ped2016-0365.

Quesada, D.; Eliche, F.A.; Villarejo, L.; Pérez, F.J.; Iglesias G., 2012. Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing, Construction and Building Materials, v. 34, 275-284. https://doi.org/10.1016/j.conbuildmat.2012.02.079

Rossignolo, J.A., 2009. Structural lightweight concrete: influence of expanded clay on the microstructure of the interfacial tansiton zone. Ambiente Construído, v. 9, (4), 119-127. https://doi.org/10.1590/s1678-86212009000400522.

Rossignolo, J.A.; Santis, B.C., 2013. Avaliação da resistência em concretos produzidos com agregados leves de argila calcinada. In: ENTECA. Anais.

Santis, B.C.; Rossignolo, J.A.; Morelli, M.R., 2016. Cerâmica leve de argila calcinada fabricada com serragem para madeira e silicato de sódio. Materials Research, v. 19, (6), 1437-1442. https://doi.org/10.1590/1980-5373-mr-2016-0249.

Silva, T.R.; Cecchin, D.; Azevedo, A.R.G.; Alexandre, J.; Valadão, I.C.R.P.; Bernardino, N.A.; Carmo, D.F.; Ferraz, P.F.P., 2021. Soil-cement blocks: a sustainable alternative for the reuse of industrial solid waste. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 56, (4), 673-686. https://doi.org/10.5327/Z21769478956.

Silva, W.M.; Ferreira, R.C.; Souza, L.O.; Silva, A.M., 2009. Effect of the incorporation of agro-industrial residues on the mechanical and thermophysical characteristics of soil-cement modular bricks. Brazilian Journal of Environmental Sciences (RBCIAMB), (14), 9-14.

Souza, M.M.; Anjos, M.A.S.; Sá, M.V.V.A.; Souza, N.S.L., 2020. Developing and classifying lightweight aggregates from sewage sludge and rice husk ash. Case Studies in Construction Materials, v. 12, e00340. https://doi.org/10.1016/j.cscm.2020.e00340.

Tang, C.-W.; Chen, H.-J.; Wang, S.-Y.; Spaulding, J. 2011. Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry. Cement & Concrete Composites, v. 33, (2), 292-300. https://doi.org/10.1016/j.cemconcomp.2010.10.008.

Tilak, L.N.; Santhosh Kumar, M.B.; Manvendra, S.; Niranjan, 2018. Use of Saw Dust as Fine Aggregate in Concrete Mixture. International Research Journal of Engineering and Technology, v. 5, (9), 1249-1253.

Tothova, D.; Heglasova, M., 2022. Measuring the environmental sustainability of 2030 Agenda implementation in EU countries: How do different assessment methods affect results? Journal of Environmental Management, v. 322, 116152. https://doi.org/10.1016/j.jenvman.2022.116152

Viezzer, M.R.Z., 2022. Utilização de resíduo madeireiro amazônico na produção de blocos de vedação para construção civil. Tese de Doutorado, Universidade do Vale do Taquari, Lajeado (Accessed May 20, 2022) at:. https://www.univates.br/bduserver/api/core/bitstreams/ed0fce6b-b9c6-491d-9c9e-d92905349171/content.

Volland, S.; Brötz, J., 2015. Lightweight aggregates produced from sand sludge and zeolitic rocks. Construction and Building Materials, v. 85, 22-29. https://doi.org/10.1016/j.conbuildmat.2015.03.018

Zaetang, Y.; Wongsa, A.; Sata, V.; Chindaprasirt, P., 2013. Use of lightweight aggregates in pervious concrete. Construction and Building Materials, v. 48, 585-591. https://doi.org/10.1016/j.conbuildmat.2013.07.077

Zaied, F.H.; Abidi, R.; Slim-Shimi, N.; Somarin, A.K., 2015. Potentiality of clay raw materials from Gram area (Northern Tunisia) in the ceramic industry. Applied Clay Science, v. 112-113, 1-9. https://doi.org/10.1016/j.clay.2015.03.027.

Zanelli, C.; Iglesias, C.; Domínguez, E.; Gardini, D.; Raimondo, M.; Guarini, G.; Dondi, M., 2015. Mineralogical composition and particle size distribution as a key to understand the technological properties of Ukrainian ball clays. Applied Clay Science, v. 108, 102-110. https://doi.org/10.1016/j.clay.2015.02.005.

Downloads

Published

2023-08-04

How to Cite

Oliveira, H. A. de, Cochiran, Melo, F. M. C. de, Almeida, V. G. de O., & Macedo, Z. S. (2023). Lightweight aggregate: a sustainable alternative for reuse of sawdust waste in the industrial process. Revista Brasileira De Ciências Ambientais, 58(1), 125–133. https://doi.org/10.5327/Z2176-94781555