Influence of different soil uses in the Pampa biome, southern Brazil, on fungal communities

Authors

DOI:

https://doi.org/10.5327/Z2176-94781550

Keywords:

soil management; physicochemical aspects of the soil; soil biochemistry; soil microorganisms.

Abstract

Anthropogenic activities in any natural ecosystem cause changes that affect the physical and biological environment, causing degradation. Likewise, these activities can cause significant changes in the chemical and physical factors of the soil, also impacting the microbiological community. The study aimed to evaluate the influence of soil biochemical and physicochemical characteristics on the development of fungal communities in three different soils of the Pampa biome. The soil types selected were: native forest, Eucalyptus plantation and pasture area, in two distinct periods: hot and cold. Microbiological, physicochemical and biochemical analyses of the soils were carried out. The following genera and species of fungi were identified:Aspergillus sp., Aspergillus niger, Fusarium sp., Geotrichum sp., Isaria sp., Penicillium sp., Scedosporium sp., Trichoderma sp., Verticilliumsp. The results showed that the fungal community is being affected by soil composition characteristics, regardless of the sampled areas. Aspergillus sp. is associated with higher amounts of manganese, boron and the Ca+Mg/K ratio in the soil, while A. niger and Trichodermasp. have a negative relationship with these variables. Aspergillus sp. showed a high ability to tolerate Mn. The most diverse area was pasture in the warm period, and the least diverse was Eucalyptus plantation in the cold period. The analyzed taxa had a reduction in the cold period compared to the warm one, except for Aspergillussp. in the Eucalyptus area, which presented a greater amount in the cold period compared to the hot period. It can be seen that the use of soil in the Pampa biome for planting monocultures or for generating pastures interferes with its characteristics and distinctly affects the fungal community.

Downloads

Download data is not yet available.

References

Alves, E.S.; Melo, V.S.; Dias Marques, J.; Coelho, L.F.M.; Teixeira, O.M.M.; Meyer, L.F.F., 2022. Indicadores biológicos de qualidade do solo no assentamento Abril Vermelho, Santa Bárbara do Pará – PA. Conjecturas, v. 22, (2), 928-942. https://doi.org/10.53660/CONJ-782-E07.

Anderson, T.H.; Domsch, K.H., 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, v. 25, (3), 393-395. https://doi.org/10.1016/0038-0717(93)90140-7.

Araújo, V.C.; Rossati, K.F.; Xavier, L.V.; Oliveira, V.A.; Carmo, G.J.S.; Assis, G.A.; Mendes, G.O. 2020a. Enhanced growth in nursery of coffee seedlings inoculated with the rhizosphere fungus Aspergillus niger for field transplantation. Rhizosphere, 15, 100236. https://doi.org/10.1016/j.rhisph.2020.100236.

Araújo, Y.R.V.; Moreira, Z.C.G.; Neves, A.I. 2020b. Estoque de carbono e de biomassa em vegetação com diferentes estágios de regeneração e alterações antrópicas em área urbana. Revista Brasileira de Meio Ambiente, v. 8, (2), 46-61.

Assis, P.C.R.; Stone, L.F.; Oliveira, J.M.; Wruck, F.J.; Madari, B.E.; Heinemann, A.B., 2019. Atributos físicos, químicos e biológicos do solo em sistemas de integração lavoura-pecuária-floresta. Agrarian, v. 12, (43), 57-70. https://doi.org/10.30612/agrarian.v12i43.8520.

Bernardi, A.C.C.; Bueno, J.O.A.; Laurenti, N.; Santos, K.E.L.; Alvez, T.C., 2018. Efeito da calagem e fertilizantes aplicados à taxa variável nos atributos químicos do solo e custos de produção de pastagem de Capim Tanzânia manejadas intensivamente. Brazilian Journal of Biosystems Engineering, v. 12, (4), 368-382. https://doi.org/10.18011/bioeng2018v12n4p368-382.

Bolzan, A.M.R.; Sacco, S.A.; Santos, G., 2016. Composition and diversity of anurans in the largest conservation unit in Pampa biome, Brazil. Biota Neotropica, v. 16, (2), e20150113. https://doi.org/10.1590/1676-0611-BN-2015-0113.

Canei, A.D.; Hernández, A.G.; Morales, D.M.L.; Silva, E.P.S.; Souza, L.F.; Loss, A.; Lourenzi, C.R.; Reis, M.S.; Soares, C.R.R.S., 2018. Atributos microbiológicos e estrutura de comunidades bacterianas como indicadores da qualidade do solo em plantios florestais na Mata Atlântica. Ciência Florestal, Santa Maria, v. 28, (4), 1405-1417. https://doi.org/10.5902/1980509835049.

Caumo, M.; Freitas, E.M.; Silva, V.L.; Toldi, M.; Alves, L.S.; Orlandi, C.R.; Fior, C.S., 2021. Grassland community structure in Permanent Preservation Areas associated with forestry and livestock in the Pampa biome, Southern Brazil. South African Journal of Botany, v. 139, 442-448. https://doi.org/10.1016/j.sajb.2021.03.001.

Correa, O.; Bezerra, A.F.M.; Honoratoa, L.R.S.; Coetez, A.C.A.; Souza, B.J.V.; Souza, E.S., 2023. Amazonian soil fungi are efficient degraders of glyphosate herbicide; novel isolates of Penicillium, Aspergillus, and Trichoderma. Brazilian Journal of Biology, v. 83, e242830. https://doi.org/10.1590/1519-6984.242830.

Dalal, R.C.; Thornton, C.M.; Allen, D.E.; Kopittke, P.M., 2021. A study over 33 years shows that carbon and nitrogen stocks in a subtropical soil are increasing under native vegetation in a changing climate. Science of the Total Environment, v. 772, 145019. https://doi.org/10.1016/j.scitotenv.2021.145019.

Daniel Junior, J.J.; Zabot, G.L.; Tres, M.V.; Harakava, R.; Kuhn, R.C.; Mazutti, M.A., 2018. Fusarium fujikuroi: A novel source of metabolites with herbicidal activity. Biocatalysis and Agricultural Biotechnology, v. 14, 314-320. https://doi.org/10.1016/j.bcab.2018.04.001.

De Morais, J.R.; Castilhos, R.M.V.; Lacerda, C.L.; Pinto, L.F.S.; Carlos, F.S., 2021. Carbon and nitrogen stocks and microbiological attributes of soil under eucalyptus cultivation in the Pampa biome of southern Brazil. Geoderma Regional, v. 25, e00392. https://doi.org/10.1016/j.geodrs.2021.e00392.

Domsch, K.H.; Gams, W.; Anderson, T.H., 2007. Compendium of soil fungi. London: Academic, 672 p.

Empresa Brasileira de Pesquisa Agropecuária (Embrapa), 1997. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2ª ed. Brasília: Embrapa, 212 p.

Furtado, V.G.A.; Vieira, L.T.A., 2020. Estudo comparativo do Índice de Diversidade de Shannon-Wiener em diferentes fragmentos de cerrado no estado de São Paulo. Vita Scientia, v. 3, (1).

Góes, Q.R.; Freitas, L.R.; Lorentz, L.H.; Vieira, F.C.B.; Weber, M.A., 2021. Análise da fauna edáfica em diferentes usos do solo no Bioma Pampa. Ciência Florestal, v. 31, (1), 123-144. https://doi.org/10.5902/1980509832130.

Gonçalves, V.A.; Melo, C.A.D.; Assis, I.R.; Ferreira, L.R.; Saraiva, D.T., 2019. Biomassa e atividade microbiana de solo sob diferentes sistemas de plantio e sucessões de culturas. Revista de Ciências Agrárias, v. 62, 1-8. https://doi.org/10.22491/rca.2019.2611.

Granada, C.E.; Vargas, L.K.; Lisboa, B.B.; Giongo, A.; Martinho, C.T.; Pereira, L.M.; Oliveira, R.R.; Bruxel, F.; Freitas, E.M.; Passaglia, L.M.P., 2019. Bacterial and Archaeal Communities Change With Intensity of Vegetation Coverage in Arenized Soils From the Pampa Biome. Frontiers in Microbiology, v. 10, 497. https://doi.org/10.3389%2Ffmicb.2019.00497.

Groppo, J.D.; Lins, S.R.M.; Camargo, P.B.; Assad, E.D.; Pinto, H.S.; Martins, S.C.; Salgado, P.R.; Evangelista, B.; Vasconcellos, E.; Sano, E.E.; Pavão, E.; Luna, R .; Martinelli, L.A., 2015. Mudanças no carbono, nitrogênio e fósforo do solo devido a mudanças no uso da terra no Brasil. Biogeosciences, v. 12, (15), 4765-4780. https://doi.org/10.5194/bg-12-4765-2015.

Ihaka, R.; Gentleman, R., 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, v. 5, (3), 299-314. https://doi.org/10.2307/1390807.

Kolde, R.; Laur, S.; Adler, P.; Vilo, J., 2012. Robust rank aggregation for gene list integration and meta-analysis, Bioinformatics, v. 28, (4), 573-580. https://doi.org/10.1093/bioinformatics/btr709.

Legendre, P.; Anderson, M.J., 1999. Distance‐based redundancy analysis: testing multispecies responses multifactorial ecological experiments. Ecological Monographs, v. 69, (1), 1-24. https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2.

Lima, D.O.; Crouzeilles, R.; Vieira, M.V., 2020. Integrating Strict protection and sustainable use areas to preserve the Brazilian Pampa biome through conservation planning. Land Use Policy, v. 99, 104836. https://doi.org/10.1016/j.landusepol.2020.104836.

Lupatini, M.; Jacques, R.J.S.; Antoniolli, Z.I.; Suleiman, A.K.A.; Fulthorpe, R.R.; Roesch, L.F.W., 2013. Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome. World Journal of Microbiology and Biotechnology, v. 29, 223-233. https://doi.org/10.1007/s11274-012-1174-3.

Mendonça, E.D.S.; Matos, E.D.S., 2005. Matéria Orgânica do solo: métodos de análises. Viçosa: Universidade Federal de Viçosa.

Mohanty, S.; Ghosh, S.; Nayak, S.; Das, A.P., 2017. Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere, v. 172, 302-309. https://doi.org/10.1016/j.chemosphere.2016.12.136.

Moreira, F.M.S.; Siqueira, J.O., 2006. Microbiologia e Bioquímica do Solo. Lavras: Editora UFLA.

Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G., 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography, v. 37, (2), 191-203. https://doi.org/10.1111/j.1600-0587.2013.00205.x.

Nascimento, J.M.; Vieira Netto, J.A.F.; Valadares, R.V.; Mendes, G.O.; Silva, I.R.; Vergütz, L.; Costa, M.D., 2021. Aspergillus niger as a key to unlock fixed phosphorus in highly weathered soils. Soil Biology and Biochemistry, v. 156, 108190. https://doi.org/10.1016/j.soilbio.2021.108190.

Nascimento, K.B.M.; Martins, A.G.R.; Takaki, G.M.C.; Silva, C.A.A.; Okada, K., 2014. Utilização de resíduos agroindustriais para produção de tanase por Aspergillus sp isolado do solo da caatinga de Pernambuco, Brasil. E-xacta, v. 7, (1), 95-103. https://doi.org/10.18674/exacta.v7i1.1146.

Novak, E.; Carvalho, L.A.; Santiago, E.F.; Tomazi, M.; Gomes, A.C.O.; Piana, P.A., 2022. Biomassa e atividade microbiana do solo sob diferentes coberturas vegetais em Região Cerrado-Mata. Revista em Agronegócio e Ambiente, v. 15, (3), e8780. https://doi.org/10.17765/2176-9168.2022v15n3e8780.

Oliveira, M.F.; Barreto-Garcia, P.B.; Junior, V.C.; Moroe, P.H.M.; Gomes, V.S.; Souza, J.P., 2022. Mudanças na biomassa microbiana e atividade de solo tropical submetido a sucessivas rotações de eucalipto no semiárido do Brasil. Geoderma Regional, v. 29, e00492. https://doi.org/10.1016/j.geodrs.2022.e00492.

Pazeto, L.H.; Alberton, J.V.; Silveira, D.B.; Freccia, A.; Filho, A.A.L.F., 2015. Pastagens de inverno: uso da técnica da sobressemeadura no município de Grão-Pará/SC. Revista Ciência e Cidadania, v.1, (1), 113-127.

Quirino, A.K.R.; Oliveira, E.P.; Santos, R.S.; Leal, P.L.; Miguel, D.L., 2020. Respiração basal do solo em diferentes sistemas de cultivo do cafeeiro na região de Barra do Choça-BA. IX Seagrus.

Ragasa, L.R.P.; Joson, S.E.A.; Bagay, W.L.R.; Perez, T.R.; Velarde, M.C., 2021. Transcriptome analysis reveals involvement of oxidative stress response in a copper-tolerant Fusarium oxysporum strain. Fungal Biology, v. 125, (6), 435-446. https://doi.org/10.1016/j.funbio.2021.01.001.

R Core Team, 2018. R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing (Accessed March, 2022) at:. http://www.rproject.org/.

Sani, M.N.H.; Hasan, M.; Uddain, J.; Subramaniam, S., 2020. Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced N-P-K fertilization. Annals of Agricultural Sciences, v. 65, (1), 107-115. https://doi.org/10.1016/j.aoas.2020.06.003.

Soltangheisi, A.; Moraes, M.T.; Cherubin, M.R.; Alvarez, D.O.; Souza, L.F.; Bieluczyk, W.; Navroskic, D.; Telesb, A.P.B.; Pavinatob, P.S.; Martinellia, L.A.; Tsai, S.M.; Camargo, P.B., 2019. Forest conversion to pasture affects soil phosphorus dynamics and nutritional status in Brazilian Amazon. Soil and Tillage Research, 194, 104330. https://doi.org/10.1016/j.still.2019.104330.

Stotzky, G., 1965. Microbial Respiration. In: Norman, A.G. (ed.). Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Madison: Agronomy Society of Agronomy, pp. 1551-1572.

Tortora, G.J.; Funke, B.R.; Case, C.L., 2017. Microbiologia. 12ª ed. Porto Alegre: Artmed, 935 p.

Utomo, B.; Prawoto, A.A.; Bonnet, S.; Bagviwat, A.; Cheewala, S.H., 2016. Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia. Journal of Cleaner Production, v. 134, (part B), 583-591. https://doi.org/10.1016/j.jclepro.2015.08.102.

Van Raij, B., 2001. Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico. São Paulo: Governo de São Paulo, 285 p.

Vera, A.; Moreno, J.L.; Siles, J.A.; López-Mondejar, R.; Zhou, Y.; Li, Y.; Bastida, F., 2021. Interactive impacts of boron and organic amendments in plant-soil microbial relationships. Journal of Hazardous Materials, v. 408, 124939. https://doi.org/10.1016/j.jhazmat.2020.124939.

Verweij, P.E.; Zhang, J.; Debets, A.J.M.; Meis, J.F.; van de Veerdonk, F.L.; Schoustra, S.E., Zwaan, B.J.; Melchers, W.J.G., 2016. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. Lancet Infectious Diseases, v. 16, (11), e251-e260. https://doi.org/10.1016/S1473-3099(16)30138-4.

Downloads

Published

2023-08-21

How to Cite

Stroher, A. L., Müller, T., Heidrich, D., Silva, G. L. da, Rempel, C., & Maciel, M. J. (2023). Influence of different soil uses in the Pampa biome, southern Brazil, on fungal communities. Revista Brasileira De Ciências Ambientais, 58(2), 182–191. https://doi.org/10.5327/Z2176-94781550