Carbon monoxide profile variability over the Manaus Metropolitan Region and its relations with biomass burning
DOI:
https://doi.org/10.5327/Z2176-94781534Keywords:
carbon monoxide; fires; climate variability; Amazon; remote sensing; wavelet transformAbstract
The present study analyzes the temporal variability of carbon monoxide (CO) over the Manaus Metropolitan Region (MMR) and its relations with nearby fires based on data obtained by the environmental satellite AQUA, for the 2003–2020 period. For this purpose, wavelet transform analyses and wavelet coherence analyses were used. The results show a well-defined seasonal behavior, with an increase and decrease in mean CO concentrations during dry and wet seasons, respectively. Semiannual and annual scales represent around 95 % of CO temporal variability in lower troposphere (500 to 1,000 hPa) and are associated with rains and fires dynamics in the region. In terms of interannual variability, multiple variability scales (1.2–2, 2.5–3 and 4.5–6 years) were observed, which explain around 10–15 % of concentration variability near surface. The results suggest that climatic variations, associated with the tropical Pacific and Atlantic sea surface temperature variations, on these different time scales, affect rain dynamics and, consequently, fires and CO concentration. Specifically, in 2015/16, the combined effect from different variability scales acted to prolong the dry period over the region, which contributed to increase fires and the CO to reach higher values compared to previous years. These results show a new aspect of the importance of evaluating the combined effect of different climate variability scales on CO concentrations in the atmosphere.
Downloads
References
Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva Junior, C.H.L.; Arai, E.; Aguiar, A.P.; Barlow, J.; Berenguer, E.; Deeter, M.N.; Domingues, L.G.; Gatti, L.; Gloor, M.; Malhi, Y.; Marengo, J.A.; Miller, J.B.; Phillips, O.L.; Saatchi, S., 2018. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, v. 9, (1), 536. https://doi.org/10.1038/s41467-017-02771-y.
Boian, C.; Kirchhoff, V.W.J.H., 2004. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America. Atmospheric Environment, v. 38, (37), 6337-6347. https://doi.org/10.1016/j.atmosenv.2004.08.021.
Climate Hazards Center, 2022. Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS). (Accessed Jun. 2, 2022) at:. https://data.chc.ucsb.edu/products/CHIRPS-2.0/.
Davidson, E.A.; De Araüjo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Mercedes, M.M.; Coe, M.T.; Defries, R.S.; Keller, M.; Longo, M.; Munger, M.; Schroeder, J.W.; Soares-Filho, W.; Souza, B.S.; Wofsy, B.S., 2012. The Amazon basin in transition. Nature, v. 481, 321-328. https://doi.org/10.1038/nature10717.
Deeter, M.N.; Martínez‐Alonso, S.; Andreae, M.O.; Schlager, H., 2018. Satellite‐based analysis of CO seasonal and interannual variability over the Amazon Basin. Journal of Geophysical Research: Atmospheres, v. 123, (10), 5641-5656. https://doi.org/10.1029/2018JD028425.
Deeter, M.N.; Martínez-Alonso, S.; Gatti, L.V.; Gloor, M.; Miller, J.B.; Domingues, L.G.; Correia, C.S.C., 2016. Validation and analysis of MOPITT CO observations of the Amazon Basin. Atmospheric Measurement Techniques, v. 9, (8), 3999-4012. https://doi.org/10.5194/amt-9-3999-2016.
Erfanian, A.; Wang, G.; Fomenko, L., 2017. Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST. Scientific Reports, v. 7, (1), 5811. https://doi.org/10.1038/s41598-017-05373-2.
Fórum Nacional de Entidades Metropolitanas (FNEM), 2018. Região metropolitana de Manaus (AM) (Accessed Apr. 20, 2022) at:. https://fnembrasil.org/regiao-metropolitana-de-manaus-am/.
Funk, C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.; Michaelsen, J.; Verdin, A. P., 2014. A quasi-global precipitation time series for drought monitoring. US Geological Survey data series, v. 832, (4), 1-12. https://doi.org/10.3133/ds832.
Funk, C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P; Shukla, S.; Husak, G.; Rowland, J.D.; Harrison, L.; Hoell, A.; Michaelsen, J., 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, v. 2, (1), 150066. https://doi.org/10.1038/sdata.2015.66.
Grinsted, A.; Moore, J.C.; Jevrejeva, S., 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, v. 11, (5-6), 561-566. https://doi.org/10.5194/npg-11-561-2004.
Hooghiemstra, P.B.; Krol, M.C.; van Leeuwen, T.T.; van der Werf, G.R.; Novelli, P.C.; Deeter, M.N.; Aben, I.; Röckmann, T., 2012. Interannual variability of carbon monoxide emission estimates over South America from 2006 to 2010. Journal of Geophysical Research, v. 117, (D15). https://doi.org/10.1029/2012JD017758.
Instituto Nacional de Pesquisas Espaciais (INPE), 2022. Monitoramento dos Focos Ativos por Região: BDQueimadas. INPE (Accessed Apr. 5, 2022) at:. https://queimadas.dgi.inpe.br/queimadas/portal-static/estatisticas_estados/.
Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Schrier, G.V.D., 2016. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Scientific Reports, v. 6, (1), 33130. https://doi.org/10.1038/srep33130.
Kopacz, M.; Jacob, D.J.; Fisher, J.A.; Logan, J.A.; Zhang, L.; Megretskaia, I.A.; Yantosca, R.M.; Singh, K.; Henze, D.K.; Burrows, J.P.; Buchwitz, M.; Khlystova, I.; McMillan, W.W.; Gille, J.C.; Edwards, D.P.; Eldering, A.; Thouret, V.; Nedelec, P., 2010. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmospheric Chemistry and Physics, v. 10, (3), 855-876. https://doi.org/10.5194/acp-10-855-2010.
Langenfelds, R.L.; Francey, R.J.; Pak, B.C.; Steele, L.P.; Lloyd, J.; Trudinger, C.M.; Allison, C.E., 2002. Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochemical Cycles, v. 16, (3), 21-1-21-22. https://doi.org/10.1029/2001GB001466.
Lelieveld, J.; Gromov, S.; Pozzer, A.; Taraborrelli, D., 2016. Global tropospheric hydroxyl distribution, budget and reactivity. Atmospheric Chemistry and Physics, v. 16, (19), 12477-12493. https://doi.org/10.5194/acp-16-12477-2016.
Liu, J.; Logan, J.A.; Murray, L.T.; Pumphrey, H.C.; Schwartz, M.J.; Megretskaia, I.A., 2013. Transport analysis and source attribution of seasonal and interannual variability of CO in the tropical upper troposphere and lower stratosphere. Atmospheric Chemistry and Physics, v. 13, (1), 129-146. https://doi.org/10.5194/acp-13-129-2013.
Logan, J.A.; Prather, M.J.; Wofsy, S.C.; McElroy, M.B., 1981. Tropospheric chemistry: A global perspective. Journal of Geophysical Research: Oceans, v. 86, (C8), 7210-7254. https://doi.org/10.1029/JC086iC08p07210.
Marengo, J.A.; Nobre, C.A.; Tomasella, J.; Cardoso, M.F.; Oyama, M.D., 2008a. Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 363, (1498), 1773-1778. https://doi.org/10.1098/rstb.2007.0015.
Marengo, J.A.; Nobre, C.A.; Tomasella, J.; Oyama, M.D.; De Oliveira, G.S.; De Oliveira, R.; Camargo, H.; Alves, L.M.; Brown, I.F., 2008b. The drought of Amazonia in 2005. Journal of Climate, v. 21, (3), 495-516. https://doi.org/10.1175/2007JCLI1600.1.
Marengo, J.A.; Tomasella, J.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A., 2011. The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical Research Letters, v. 38, (12). https://doi.org/10.1029/2011GL047436.
McMillan, W.W.; Evans, K.D.; Barnet, C.D.; Maddy, E.S.; Sachse, G.W.; Diskin, G.S., 2011. Validating the AIRS Version 5 CO retrieval with DACOM in situ measurements during INTEX-A and-B. IEEE Transactions on Geoscience and Remote Sensing, v. 49, (7), 2802-2813. https://doi.org/10.1109/TGRS.2011.2106505.
National Oceanic Atmospheric and Administration (NOAA), 2022. Historical El Niño / La Niña episodes (1950-present). NOAA (Accessed Jun. 16, 2022) at:. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.
Novelli, P.C.; Masarie, K.A.; Lang, P.M.; Hall, B.D.; Myers, R.C.; Elkins, J.W., 2003. Reanalysis of tropospheric CO trends: Effects of the 1997–1998 wildfires. Journal of Geophysical Research: Atmospheres, v. 108, (D15). https://doi.org/10.1029/2002JD003031.
Panisset, J.S.; Libonati, R.; Gouveia, C.M.P.; Machado‐Silva, F.; França, D.A.; França, J.R.A.; Peres, L.F., 2018. Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. International Journal of Climatology, v. 38, (2), 1096-1104. https://doi.org/10.1002/joc.5224.
Petrenko, V.V.; Martinerie, P.; Novelli, P.; Etheridge, D.M.; Levin, I.; Wang, Z.; Blunier, T.; Chappellaz, J.; Kaiser, J.; Lang, P.; Steele, L.P.; Hammer, S.; Mak, J.; Langenfelds, R.L.; Schwander, J.; Severinghaus, J.P.; Witrant, E.; Petron, G.; Battle, M.O.; Forster, G.; Sturges, W.T.; Lamarque, J.-F.; Steffen, K.; White, J.W.C., 2013. A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air. Atmospheric Chemistry and Physics, v. 13, (15), 7567-7585. https://doi.org/10.5194/acp-13-7567-2013.
Ribeiro, I.O.; Andreoli, R.V.; Kayano, M.T.; Sousa, T.R.; Medeiros, A.S.; Godoi, R.H.M.; Godoi, A.F.L; Duvoisin, S.J.; Martin, S.T.; de Souza, R.A.F., 2018a. Biomass burning and carbon monoxide patterns in Brazil during the extreme drought years of 2005, 2010, and 2015. Environmental Pollution, v. 243, (part B), 1008-1014. https://doi.org/10.1016/j.envpol.2018.09.022.
Ribeiro, I.O.; Andreoli, R.V.; Kayano, M.T.; Sousa, T.R.; Medeiros, A.S.; Guimarães, P.C.; Barbosa, C.G.G.; Godoi, R.H.M.; Martin, S.T.; de Souza, R.A.F., 2018b. Impact of the biomass burning on methane variability during dry years in the Amazon measured from an aircraft and the AIRS sensor. Science of The Total Environment, v. 624, 509-516. https://doi.org/10.1016/j.scitotenv.2017.12.147.
Ribeiro, I.O.; Santos, E.O.; Batista, C.E.; Fernandes, K.S.; Ye, J.; Medeiros, A.S.; de Oliveira, R.L.; de Sá, S.S.; de Sousa, T.R.; Kayano, M.T.; Andreoli, R.V.; Machado, C.M.D.; Surratt, J.D.; Junior, S.D.; Martin, S.T.; de Souza, R.A.F., 2020. Impact of biomass burning on a metropolitan area in the Amazon during the 2015 El Niño: The enhancement of carbon monoxide and levoglucosan concentrations. Environmental Pollution, v. 260, 114029. https://doi.org/10.1016/j.envpol.2020.114029.
Rozante, J.R.; Rozante, V.; Alvim, D.S.; Manzi, A.O.; Chiquetto, J.B.; D’Amelio, M.T.S.; Moreira, D.S., 2017. Variations of carbon monoxide concentrations in the megacity of São Paulo from 2000 to 2015 in different time scales. Atmosphere, v. 8, (5), 81. https://doi.org/10.3390/atmos8050081.
Santos, Y.L.F.D.; Souza, R.A.F.D.; Souza, J.M.D.; Andreoli, R.V.; Kayano, M.T.; Ribeiro, I.O.; Guimarães, P.C., 2017. Variabilidade espaço-temporal do monóxido de carbono sobre a América do Sul a partir de dados de satélite de 2003 a 2012. Revista Brasileira de Meteorologia, v. 32, (1), 89-98. https://doi.org/10.1590/0102-778632120150163.
Seiler, W.; Giehl, H.; Brunke, E.G.; Halliday, E., 1984. The seasonality of CO abundance in the Southern Hemisphere. Tellus B, v. 36, (4), 219-231. https://doi.org/10.3402/tellusb.v36i4.14906.
Shindell, D.T.; Faluvegi, G.; Koch, D.M.; Schmidt, G.A.; Unger, N.; Bauer, S.E., 2009. Improved attribution of climate forcing to emissions. Science, v. 326, (5953), 716-718. https://doi.org/10.1126/science.1174760.
Strode, S.A.; Duncan, B.N.; Yegorova, E.A.; Kouatchou, J.; Ziemke, J.R.; Douglass, A.R., 2015. Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models. Atmospheric Chemistry and Physics, v. 15, (20), 11789-11805. https://doi.org/10.5194/acp-15-11789-2015.
Timmermann, A.; An, S.I.; Kug, J.S.; Jin, F.F.; Cai, W.; Capotondi, A.; Cobb, K.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; Stein, K.; Wittenberg, A.T.; Yun, K.S.; Bayr, T.; Chen, H.C.; Chikamoto, Y.; Dewitte, B.; Dommenget, D.; Grothe, P.; Guilyardi, E.; Ham, Y.G.; Hayashi, M.; Ineson, S.; Kang, D.; Kim, S.; Kim, W.; Lee, J.Y.; Li, T.; Luo, J.J.; McGregor, S.; Planton, Y.; Power, S.; Rashid, H.; Ren, H.L.; Santoso, A.; Takahashi, K.; Todd, A.; Wang, G.; Wang, G.; Xie, R.; Yang, W.H.; Yeh, S.W.; Yoon, J.; Zeller, E.; Zhang, X., 2018. El Niño–southern oscillation complexity. Nature, v. 559, (7715), 535-545. https://doi.org/10.1038/s41586-018-0252-6.
Torrence, C.; Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, v. 79, (1), 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
Torrence, C.; Webster, P.J., 1999. Interdecadal changes in the ENSO–monsoon system. Journal of climate, v. 12, (8), 2679-2690. https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.
Vale, R.S.; Santana, R.A.; Júnior, C.Q.D., 2020. Análise de dados climáticos usando transformada em ondeletas cruzada e coerência. Revista Brasileira de Geografia Física, v. 13, (2), 641-647. https://doi.org/10.26848/rbgf.v13.2.p641-647.
van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin,Y.; van Leeuwen, T.T., 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, v. 10, (23), 11707-11735. https://doi.org/10.5194/acp-10-11707-2010.
van Marle, M.J.E.; Field, R.D.; van der Werf, G.R.; Estrada de Wagt, I.A.; Houghton, R.A.; Rizzo, L.V.; Artaxo, P.; Tsigaridis, K., 2017. Fire and deforestation dynamics in Amazonia (1973–2014). Global Biogeochemical Cycles, v. 31, (1), 24-38. https://doi.org/10.1002/2016GB005445.
Weng, H.; Lau, K.M., 1994. Wavelets, period doubling, and time–frequency localization with application to organization of convection over the tropical western Pacific. Journal of Atmospheric Sciences, v. 51, (17), 2523-2541. https://doi.org/10.1175/1520-0469(1994)051<2523:WPDATL>2.0.CO;2.
Worden, H.M.; Deeter, M.N.; Edwards, D.P.; Gille, J.C.; Drummond, J.R.; Nédélec, P., 2010. Observations of near‐surface carbon monoxide from space using MOPITT multispectral retrievals. Journal of Geophysical Research: Atmospheres, v. 115, (D18). https://doi.org/10.1029/2010JD014242.
Yashiro, H.; Sugawara, S.; Sudo, K.; Aoki, S.; Nakazawa, T., 2009. Temporal and spatial variations of carbon monoxide over the western part of the Pacific Ocean. Journal of Geophysical Research: Atmospheres, v. 114, (D8). https://doi.org/10.1029/2008JD010876.
Zhang, L.; Jiang, H.; Lu, X.; Jin, J., 2016. Comparison analysis of global carbon monoxide concentration derived from SCIAMACHY, AIRS, and MOPITT. International Journal of Remote Sensing, v. 37, (21), 5155-5175. https://doi.org/10.1080/01431161.2016.1230282.
Zheng, B.; Chevallier, F.; Yin, Y.; Ciais, P.; Fortems-Cheiney, A.; Deeter, M.N.; Parker, R.J.; Wang, Y.; Worden, H.M.; Zhao, Y., 2019. Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth System Science Data, v. 11, (3), 1411-1436. https://doi.org/10.5194/essd-11-1411-2019.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.