Delimitation of water areas using remote sensing in Brazil’s semiarid region

Authors

DOI:

https://doi.org/10.5327/Z2176-94781524

Keywords:

geoprocessing; multispectral images; modified normalized difference water index.

Abstract

Remote sensing techniques are of fundamental importance to investigate the changes occurred in the terrestrial mosaic over the years and contribute to the decision-making by increasing efficient environmental and water management. This article aimed to detect, demarcate and quantify the hydric area of Poço da Cruz reservoir, located in Ibimirim, Pernambuco, semiarid region of Brazil, with modeling based on Landsat 8/OLI satellite multispectral images from 2015 to 2020, and to relate it with data from the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) satellites average rainfall. For this purpose, the Modified Normalized Difference Water Index (MNDWI) was modeled, being produced georeferenced theme maps and extracted only the pixels represented by positive spectral values, which represent water targets. The open-access software Quantum Geographic Information System (QGIS, version 2.18.16) was used for all stages of digital image processing and connection with complementary databases on the theme maps elaboration. In the results, changes in the spatial distribution of Poço da Cruz were evidenced and analyzed using precipitation data from the CHIRPS product, allowing a better understanding of the rainfall behavior in the region and its influence. The MNDWI was lined with the CHIRPS product, in which the spatial correlation between the rainy event and the water area’s delimitation is documented, especially in October 2017 (minimum values) and October 2020 (maximum values).

Downloads

Download data is not yet available.

References

Agência Nacional de Águas e Saneamento Básico (ANA). Portal. ANA (Accessed July, 2022) at:. https://www.ana.gov.br.

Agência Pernambucana de Águas e Climas (APAC). Sistema de Informação Geográfica. APAC (Accessed Nov, 2022) at:. https://www.apac.pe.gov.br/.

Alesheikh, A.A.; Ghorbanali, A.; Nouri, N., 2007. Coastline change detection using remote sensing. International Journal of Environmental Science & Technology, v. 4, 61-66. https://doi.org/10.1007/BF03325962.

Almeida, D.N.O.; Salgueiro, C.O.B.; Chaves, J.V.; Santos, S.M.; Oliveira, L.M.M., 2021. Spectral indices in the detection of water bodies using images from the MSI - Sentinel 2 sensor. Journal of Hyperspectral Remote Sensing, v. 11, (2), 125-135. https://doi.org/10.29150/jhrs.v11.2.p125-135.

Araújo, D.C.S.; Montenegro, S.M.G.L.; Corbari, C.; Viana, J.F.S., 2021. Calibration of FEST-EWB hydrological model using remote sensing data in a climate transition region in Brazil. Hydrological Sciences Journal, v. 66, (3), 513-524. https://doi.org/10.1080/02626667.2021.1881100.

Bai, L.; Shi, C.; Yang, Y.; Wu, J., 2018. Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sensing, v. 10, (3), 362. https://doi.org/10.3390/rs10030362.

Bayissa, Y.; Tadesse, T.; Demisse, G.; Shiferaw, A., 2017. Evaluation of satellite based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sensing, v. 9, (7), 669. https://doi.org/10.3390/rs9070669.

Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS). Portal. CHIRPS (Accessed July, 2022) at:. https://www.chc.ucsb.edu/data/chirps.

Cohen, W.B.; Goward, S.N., 2004. Landsat’s role in ecological applications of remote sensing. BioScience, v. 54, (6), 535-545. https://doi.org/10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2.

Corrêa, K.A.B., 2020. Estimativa de precipitação pluvial por satélites para o estado do Mato Grosso. Dissertação de Mestrado em Engenharia de Sistemas Agrícolas. Universidade de São Paulo, Piracicaba. https://doi.org/10.11606/D.11.2020.tde-12012021-104910.

Costa, J.; Pereira, G.; Siqueira, M.E.; Cardozo, F.; Silva, V.V., 2019. Validação dos dados de precipitação estimados pelo CHIRPS para o Brasil. Revista Brasileira de Climatologia, v. 24, 228-243. https://doi.org/10.5380/abclima.v24i0.60237.

Dembélé, M.; Zwart, S.J., 2016. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. International Journal of Remote Sensing, v. 37, (17), 3995-4014. https://doi.org/10.1080/01431161.2016.1207258.

Du, Z.; Linghu, B.; Ling, F.; Li, W.; Tian, W.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X., 2012. Estimating surface water area changes using time-series Landsat data in the Qingming River basin, China. Journal of Applied Remote Sensing, v. 6, (1), 063609. https://doi.org/10.1117/1.JRS.6.063609.

Duan, Y.; Zhang, Y.; Ling, F; Wang, Q.; Li, W.; Li, X., 2016. Water bodies’ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, v. 8, (4), 354. https://doi.org/10.3390/rs8040354.

El-Asmar, H.M.; Hereher, M.E., 2011. Change detection of the coastal zone east of the Nile Delta using remote sensing. Environmental Earth Sciences, v. 62, 769-777. https://doi.org/10.1007/s12665-010-0564-9.

Erazo, B.; Bourrel, L.; Frappart, F.; Chimborazo, O.; Labat, D., Dominguez-Granda, L.; Matamoros, D.; Mejia, R., 2018. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM) for Rainfall Variability over the Pacific Slope and Coast of Ecuador. Water, v. 10, (2), 213. https://doi.org/10.3390/w10020213.

Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R., 2015. A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm, International Journal of Digital Earth, v. 9, (2), 113-133. https://doi.org/10.1080/17538947.2015.1026420.

Fernandes, R.R.; Nunes, G.M.; Silva, T.S.F., 2012. Classificação orientada a objetos aplicada na caracterização da cobertura da terra no Araguaia. Pesquisa Agropecuária Brasileira, v. 47, (9), 1251-1260. https://doi.org/10.1590/S0100-204X2012000900010.

Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; Michaelsen, J., 2015. The climate hazards infrared precipitation with stations: a new environmental record for monitoring extremes. Scientific Data, v. 2, 150066. https://doi.org/10.1038/sdata.2015.66.

Guglielmeli, A.C.O.; Silva, S.M.L.; Strauch, J.C.M., 2018. Análise multitemporal do grau de antropização da área de proteção ambiental municipal do Rio Uberaba, Uberaba, MG. Brazilian Journal of Environmental Sciences (Online), (48), 114-127. https://doi.org/10.5327/Z2176-947820180331.

Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; He, D.; Kurban, A.; Maeyer, P., 2017. Meteorological drought analysis in the Lower Mekong Basin using satellite-based long-term CHIRPS product. Sustainability, v. 6, (9), 901. https://doi.org/10.3390/su9060901.

Instituto Nacional de Pesquisas Espaciais (INPE) (Accessed Aug, 2022) at:. http://geopro.crn.inpe.br/.

Jeihouni, M.; Toomanian, A.; Kazem, S.; Alavipanah; Hamzeh, S., 2017. Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling. Environmental Monitoring and Assessment, v. 189, 572. https://doi.org/10.1007/s10661-017-6308-5.

Klein, I.; Gessner, U.; Dietz, A.J.; Kuenzer, C., 2017. Global WaterPack – A 250 m resolution dataset revealing the daily dynamics of global inland water bodies. Remote Sensing of Environment, v. 198, 345-362. https://doi.org/10.1016/j.rse.2017.06.045.

Lai, Y.; Qiu, Y.; Fu, W.; Shi, L., 2013. Monitoring and analysis of surface water in Kashgar region based on TM imagery in last 10 years, Remote Sensing, v. 28, 50-57. https://doi.org/10.3969/j.issn.1000-3177.2013.03.009.

Leonardo, H.R.A.L.; Salgueiro, C.O.B.; Almeida, D.N.O.; Santos, S.M.; Oliveira, L.M.M., 2021. Sensoriamento Remoto Aplicado na Geoespacialização do Reservatório Poço da Cruz - PE e seu Entorno. Revista Brasileira de Geografia Física, v. 14, (6), 3592-3607. https://doi.org/10.26848/rbgf.v14.6.p3614-3629.

Lu, S.; Ma, J.; Ma, X.; Tang, H.; Zhao, H.; Ali Baig Hasan, M., 2019. Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000 – 2016 derived from MODIS archives. ISWDC. https://doi.org/10.5281/zenodo.2616035.

Luo, C.; Xu, C.; Cao, Y.; Tong, L., 2017. Monitoring of water surface area in Lake Qinghai from 1974 to 2016. Journal of Lake Science, v. 29, (5), 1245-1253. https://doi.org/10.18307/2017.0523.

Nogueira, S.M.C.; Moreira, M.A.; Volpato, M.M.L., 2018. Evaluating Precipitation Estimates from Eta, TRMM and CHIRPS Data in the South Southeast Region of Minas Gerais State - Brazil. Remote Sensing, v. 10, (2), 313. https://doi.org/10.3390/rs10020313.

Ornellas, J.L.; Caiafa, A.N.; Lopes, E.R.N, 2022. Temporal dynamics and land use in the marine protected area of Baía do Iguape in Northeastern Brazil. Brazilian Journal of Environmental Sciences (Online), v. 57, (3), 386-396. https://doi.org/10.5327/Z217694781312.

Paredes-Trejo, F.J.; Barbosa, H.A.; Lakshmi Kumar, T., 2017. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. Journal of Arid Environments, v. 139, 26-40. https://doi.org/10.1016/j.jaridenv.2016.12.009.

Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, v. 540, 418-422. https://doi.org/10.1038/nature20584.

Penachio, S.M.; Oliveira, S.A.S.; Tagliarini, F.S.N.; Barros, A.C., 2020. Índices radiométricos para estimativa de umidade do solo. Brazilian Journal of Development, v. 6, (5), 29540-29549. https://doi.org/10.34117/bjdv6n5-418.

Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S., 2014. Water feature extraction and change detection using multitemporal landsat imagery. Remote Sensing, v. 6, (5), 4173-4189. https://doi.org/10.3390/RS6054173.

Rossato, L.; Marengo, J.A.; Angelis, C.F.; Pires, L.B.M.; Mendiondo, E.M., 2017. Impact of soil moisture over Palmer Drought Severity Index and its future projections in Brazil. Brazilian Journal of Water Resources, v. 22, e36. https://10.1590/2318-0331.0117160045.

Silva, B.B.; Braga, A.C.; Braga, C.C.; Oliveira L.M.M.; Montenegro, S.M.G.L; Barbosa Júnior, B., 2016. Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, (1), 3-8. https://doi.org/10.1590/1807-1929/agriambi.v20n1p3-8.

Silva, E.R.M.; Barbosa, I.C.C.; Silva, H.J.F.; Costa, L.G.S.; Rocha, E.J.P., 2020. Análise do Desempenho da Estimativa de Precipitação do Produto CHIRPS para Sub-Bacia do Rio Apeú, Castanhal-PA. Revista Brasileira de Geografia Física, v. 13, (3), 1094-1105. https://doi.org/10.26848/rbgf.v13.3.p1094-1105.

Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B., 2015. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, v. 30, (6), 650-661. https://doi.org/10.1080/10106049.2014.965757.

Song, C.; Huang, B.; Ke, L.; Richards, K. S., 2014. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS Journal of Photogrammetry and Remote Sensing, v. 92, 26-37. https://doi.org/10.1016/j.isprsjprs.2014.03.001.

Souza, A.; Neto, A.; Rossato, L.; Alvalá, R.; Souza, L., 2018. Use of SMOS L3 Soil Moisture Data: Validation and Drought Assessment for Pernambuco State, Northeast Brazil. Remote Sens (Basel), v. 10, (8), 1314. https://doi.org/10.3390/rs10081314.

Taravat, A.; Rajaei, M.; Emadodin, I.; Hasheminejad, H.; Mousavian, R.; Biniyaz, E., 2016. A spaceborne multisensory, multitemporal approach to monitor water level and storage variations of lakes. Water, v. 8, (11), 478. https://doi.org/10.3390/w8110478.

Toté, C.; Patricio, D.; Boogaard, H.; Van Der Wijngaart, R.; Tarnavsky, E.; Funk, C., 2015. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing, v. 7, (2), 1758-1776. https://doi.org/10.3390/rs70201758.

Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A., 2016. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sensing of Environment, v. 178, 142-157. https://doi.org/10.1016/j.rse.2016.02.034.

United States Geologic Survery (USGS). Catálogo USGS. USGS (Accessed Nov, 2022) at:. https://earthexplorer.usgs.gov/.

Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J., 2014. A global inventory of lakes based on high-resolution satellite imagery, Geophysical Research Letters, v. 41, (18), 6396-6402. https://doi.org/10.1002/2014GL060641.

Xu, H., 2006. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, v. 27, (14), 3025-3033. https://doi.org/10.1080/01431160600589179.

Wan, W.; Long, D.; Hong, Y.; Ma, Y.; Yuan, Y.; Xiao, P.; Duan, H.; Han, Z.; Gu, X., 2016. A lake dataset for the Tibetan Plateau from the 1960s, 2005, and 2014, Science Data, v. 3, 160039. https://doi.org/10.1038/sdata.2016.39.

Zhang, G.; Li, J. Schwatke Zheng, G., 2017. Lake-area mapping in the Tibetan Plateau: an evaluation of data and methods. International Journal of Remote Sensing, v. 38, (3), 742-772. https://doi.org/10.1080/01431161.2016.1271478.

Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.C., 2018. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sensing of Environment, v. 215, 482-494. https://doi.org/10.1016/j.rse.2018.04.031.

Downloads

Published

2023-04-14

How to Cite

Almeida, D. N. O. de, Araújo, D. C. dos S., Soares, D. R., Maia, F. M. de A., Montenegro, S. M. G. L., Santos, S. M. dos, & Oliveira, L. M. M. de. (2023). Delimitation of water areas using remote sensing in Brazil’s semiarid region. Revista Brasileira De Ciências Ambientais, 58(1), 20–29. https://doi.org/10.5327/Z2176-94781524

More articles by the same author(s)