Analysis of total phosphorus and chlorophyll a correlations in Ceará reservoirs, Brazil
DOI:
https://doi.org/10.5327/Z2176-94781521Keywords:
nutrients; semiarid; eutrophication; water quality.Abstract
Reservoirs worldwide are prone to water quality degradation caused by increased primary production. Therefore, it is essential to comprehend the factors that influence this phenomenon as it plays a fundamental role in controlling eutrophication. The aim of this study was to analyze the correlation between total phosphorus (TP) and chlorophyll a (Chla) in 155 reservoirs located in the state of Ceará, Brazil. This analysis was conducted through a comprehensive examination of historical data (2008–2021) obtained from the water resource management company of the state, which monitors these parameters. The correlation between TP and Chla was examined through simple adjustments, utilizing the coefficient of determination (R²) as an evaluation metric. Afterward, the study investigated the potential influences on the dynamics of these adjustments based on factors such as the hydrographic basin, reservoir size, trophic state (as for Chla and TP concentrations), and the volumetric variability coefficient. In general, the adjustments yielded unsatisfactory models (R² < 0.4) for the majority of reservoirs (n = 115). Despite their inadequacy, these models align with classic literature models, indicating that in most basins, higher availability of TP in the water column contributes to increased Chla concentration. The analysis of factors influencing the pattern and dispersion of adjustments between Chla and TP revealed that the performance of R² is associated with various factors, such as different watersheds, volumetric variability, and Chla concentrations. The variance in R² between reservoirs of varying sizes and trophic states based on TP concentration was considered insignificant.
Downloads
References
Bao, L.; Chen, J.; Tong, H., Qian, J.; Li, X., 2022. Phytoplankton dynamics and implications for eutrophication management in an urban river with a series of rubber dams. Journal of Environmental Management, v. 311, 114865. https://doi.org/10.1016/j.jenvman.2022.114865.
Bartsch, F.; Gakstatter, H., 1978. Management decisions for lake systems on a survey of trophic status, limiting nutrients, and nutrient loadings. In: American-Soviet Symposium on Use of Mathematical Models to Optimize Water Quality Management.
Brasil. Ministério do Desenvolvimento Regional, 2021. Portaria nº 80. Resolução Condel/Sudene no 150, de 13 de dez de 2021. Diário Oficial da União, Seção 1, p. 42 (Accessed June 27, 2021) at:. https://www.in.gov.br/web/dou/-/resolucao-condel/sudene-n-150-de-13-de-dezembro-de-2021-370970623.
Carlson, R., 1977. A Trophic State Index for Lakes. Liminology and Oceonography, v. 22, (2), 361-369. https://doi.org/10.4319/lo.1977.22.2.0361.
Carneiro, F.; Nanout, J.; Vieira, L.; Roland, F.; Bini, L., 2014. Determinants of chlorophyll-a concentration in tropical reservoirs. Hydrobiologia, v. 740, 89-99. https://doi.org/10.1007/s10750-014-1940-3.
Cavalcante, H.; Araújo, F.; Becker, V., 2018. Phosphorus dynamics in the water of tropical semiarid reservoirs in a prolonged drought period. Acta Limnologica Brasiliensia, v. 30, e105. https://doi.org/10.1590/s2179-975x1617.
Ceará, 2018. Companhia de Gestão dos Recursos Hídricos. Matriz dos Usos Múltiplos dos Açudes. Fortaleza (Accessed May 7, 2021) at:. http://cdn.funceme.br/hidro-ce/data/arquivos/Matriz dos Usos Mútiplos dos Açudes.pdf.
Ceará, 2021. Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME). Portal Hidrológico do Ceará (Accessed May 7, 2021) at:. http://www.hidro.ce.gov.br.
Chen, M.; Ding, S.; Chen, X.; Sun, Q.; Fan, X.; Lin, J.; Ren, M.; Yang, L.; Zhang, C., 2018. Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Water Research, v. 133, 153-164. https://doi.org/10.1016/j.watres.2018.01.040.
Cruz, P.; Viana, L.; Ceballos, B., 2019. Reservatórios tropicais: Eutrofização e florações de cianobactérias. Semiárido Brasileiro. Belo Horizonte: Poisson, v. 3, 33-42. https://doi.org/10.36229/978-85-7042-154-8.CAP.03.
Cunha, D.G.F.; Calijuri, M.D.C.; Lamparelli, M.C., 2013. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecological Engineering, v. 60, 126-134. https://doi.org/10.1016/j.ecoleng.2013.07.058.
Dillon, P.; Rigler, F., 1974. The phosphorus-chlorophyll relationship in lakes1,2: Phosphorus-chlorophyll relationship Limnology and Oceanography, v. 19, (5), 767-773. https://doi.org/10.4319/lo.1974.19.5.0767.
Ding, S.; Chen, M.; Gong, M.; Fan, X.; Qin, B.; Xu, H.; Gao, S.; Jin, Z.; Tsang, D.C.W.; Zhang, C., 2018. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment, v. 625, 872-884.
Dutra, W.C.P.; Fia, R.; Ribeiro, C.B., 2022. Water quality modeling in the Paraibuna River in Juiz de Fora/MG: diagnosis and prognosis. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 57, (2), 256-267. https://doi.org/10.5327/Z2176-94781288.
Figueiredo, O.R.; Simioli, M.M.; Jesus, T.V.U.C.; Cruz, P.P.N.C.; Bayma, G., Nogueira, S.F.; Green, T.R.; Camargo, P.B., 2020. Hydrobiogeochemistry of two catchments in Brazil under forest recovery in an Environmental Services Payment Program. Environmental Monitoring and Assessment, v. 193 (1), 1-16. https://doi.org/10.1007/s10661-020-08773-6.
Filazzola, A.; Mahdiyan, O.; Shuvo, A.; Ewins, C.; Moslenko, L.; Sadid, T.; Blagrave, K., 2020. A database of chlorophyll and water chemistry in freshwater lakes. Scientific Data, v. 7, 310. https://doi.org/10.1038/s41597-020-00648-2.
Fundação Cearense de Meteorologia e Recursos Hídricos (Funceme), 2021. Portal Hidrológico do Ceará. (Accessed May 7, 2021) at:. http://www.funceme.br/hidro-ce-zend/acude/nivel-diario.
Goyette, J.; Bennett, E.M.; Maranger, R., 2019. Differential influence of landscape features and climate on nitrogen and phosphorus transport throughout the watershed. Biogeochemistry, v. 142, (1), 155-174. https://doi.org/10.1007/s10533-018-0526-y.
Janssen, A.B.; Droppers, B.; Kong, X.; Teurlincx, S.; Tong, Y., Kroeze, C., 2021. Characterizing 19 thousand Chinese lakes, ponds and reservoirs by morphometric, climate and sediment characteristics. Water Research, v. 202, 117427. https://doi.org/10.1016/j.watres.2021.117427.
Jones, J.; Bachmann, R., 1976. Prediction of Phosphorus and Chlorophyll Levels in Lakes, v. 48, (9), 2176-2182. (Accessed May 14, 2021) at:. https://www.jstor.org/stable/25040000.
Kim, K.H.; Ahn, J., 2022. Machine learning predictions of chlorophyll-a in the Han river basin, Korea. Journal of Environmental Management, v. 318, 115636. https://doi.org/10.1016/j.jenvman.2022.115636
Kupssinskü, L.S.; Guimarães, T.T.; Souza, E.M.; Zanotta, D.C.; Veronez, M.R.; Gonzaga, L.; Mauad, F.F., 2020. A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning. Sensors, v. 20, (7), 2125. https://doi.org/10.3390/s20072125.
Leite, J.N.C.; Becker, V., 2019. Impacts of drying and reflooding on water quality of a tropical semi-arid reservoir during an extended drought event. Acta Limnologica Brasiliensia, 31, e15. https://doi.org/10.1590/s2179-975x6918.
Liang, Z.; Soranno, P.; Wagner, T., 2020. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes. Water Research, v. 185, 116236. https://doi.org/10.1016/j.watres.2020.116236.
Lira, C.; Medeiros, P.; Lima Neto, I.E., 2020. Modelling the impact of sediment management on the trophic state of a tropical reservoir with high water storage variations. Anais da Academia Brasileira de Ciências, v. 92, (1), 1-18. https://doi.org/10.1590/0001-3765202020181169.
Mamun; Atique, U.; An, K., 2021. Assessment of Water Quality Based on Trophic Status and Nutrients-Chlorophyll Empirical Models of Different Elevation Reservoirs. Water, v. 13, (24), 3640. https://doi.org/10.3390/w13243640.
Mamun; Kim, J.-J.; Alam, A.; An, K.G., 2019. Prediction of Algal Chlorophyll-a and Water Clarity in Monsoon-Region Reservoir Using Machine Learning Approaches. Water, v. 12, (1), 30. https://doi.org/10.3390/w12010030.
Mandal, S.; Susanto, R.D.; Ramakrishnan, B., 2022. On Investigating the Dynamical Factors Modulating Surface Chlorophyll-a Variability along the South Java Coast. Remote Sensing, v. 14, (7), 1745. https://doi.org/10.3390/rs14071745.
Melo, M.N.; Piazza, G.A.; Pinheiro, A.; Torres, E.; Kaufmann, V., 2022. Qualitative assessment in river and phreatic aquifer water in a rural watershed in the Atlantic Forest biome. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 57, (1), 48-57. https://doi.org/10.5327/Z217694781041.
Mendes, C.T.; Severiano, J.D.S.; Moura, G.C.; Silva, R.D.D.S.; Monteiro, F.P.M.; Lucena Barbosa, J.E., 2022. The reduction in water volume favors filamentous cyanobacteria and heterocyst production in semiarid tropical reservoirs without the influence of the N:P ratio. Science of the Total Environment, v. 816, 151584. https://doi.org/10.1016/j.scitotenv.2021.151584.
Menezes, R.F.; Attayde, J.L.; Kosten, S.; Lacerot, G.; Souza, L.C.E.; Costa, L.; Sternberg, S.L.; Santos, A.C.D.; Medeiros Rodrigues, M.; Jeppesen, E., 2019. Differences in food webs and trophic states of Brazilian tropical humid and semi-arid shallow lakes: implications of climate change. Hydrobiologia, v. 829, 95-111. https://doi.org/10.1007/s10750-018-3626-8.
Mesquita, J.B.F.; Lima Neto, I.E.; Raabe, A.; Araújo, J., 2020. The influence of hydroclimatic conditions and water quality on evaporation rates of a tropical lake. Journal of Hydrology, v. 590, 125456. https://doi.org/10.1016/j.jhydrol.2020.125456.
Moriasi, D.; Gitau, N.; Pai, N.; Daggupati, 2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, v. 58, (6), 1763-1785. https://doi.org/10.13031/trans.58.10715.
Pacheco, C.; Lima Neto, I., 2017. Effect of Artificial Circulation on the Removal Kinetics of Cyanobacteria in a Hypereutrophic Shallow Lake. Journal of Environmental Engineering, v. 143, (12), 1-8. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001289.
Qin, B.; Zhou, J.; Elser, J.J.; Gardner, W.S.; Deng, J.; Brookes, J.D., 2020. Water Depth Underpins the Relative Roles and Fates of Nitrogen and Phosphorus in Lakes. Environmental Science & Technology, v. 54, (6), 3191-3198. https://doi.org/10.1021/acs.est.9b05858.
Quinlan, R.; Filazzola, A.; Mahdiyan, O.; Shuvo, A.; Blagrave, K.; Ewins, C.; Moslenko, L.; Gray, D.; O’Reilly, C.; Sharma, S., 2021. Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnology and Oceanography, v. 66, (2), 392-404. https://doi.org/10.1002/lno.11611.
Rast, W.; Lee, G., 1978. Summary Analysis of The North American (US Portion) OECD Eutrophication Project: Nutrient Loading - Lake Response Relationships And Trophic State Indices.
Raulino, J.; Silveira, C.; Lima Neto, I., 2021. Assessment of climate change impacts on hydrology and water quality of large semi-arid reservoirs in Brazil. Hydrological Sciences Journal, v. 66, (8), 1321-1336. https://doi.org/10.1080/02626667.2021.1933491.
Rocha Junior, C.; Costa, M.; Menezes, R..; Attayde, J.; Becker, V., 2018. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnologica Brasiliensia, v 30, e106. https://doi.org/10.1590/S2179-975X2117.
Rocha, M.J.D.; Lima Neto, I.E., 2021. Modeling flow-related phosphorus inputs to tropical semiarid reservoirs. Journal of Environmental Management, v. 295, 113123. https://doi.org/10.1016/j.jenvman.2021.113123.
Rocha, M.J.D.; Lima Neto, I.E., 2022. Internal phosphorus loading and its driving factors in the dry period of Brazilian semiarid reservoirs. Journal of Environmental Management, v. 312, 114983. https://doi.org/10.1016/j.jenvman.2022.114983.
Rocha, S.M.G.; Mesquita, J.B.F.; Lima Neto, I.E., 2020. Análise e modelagem das relações entre nutrientes e fitoplâncton em reservatórios do Ceará. Brazilian Journal of Environmental Sciences (RBCIAMB), n. 54, 134-147. https://doi.org/10.5327/Z2176-947820190536.
Saha, A.; Jesna, P.K.; Ramya, V.L.; Mol, S.S.; Panikkar, P.; Vijaykumar, M.E.; Sarkar, U.; Das, B.K., 2022. Phosphorus fractions in the sediment of a tropical reservoir, India: Implications for pollution source identification and eutrophication. Environmental Geochemistry and Health, v. 44, (3), 749-769. https://doi.org/10.1007/s10653-021-00985-0.
Santos, D.; Silva, J.; Becker, V., 2021. Increase eutrophication symptoms during a prolonged drought event in tropical semi-arid reservoirs, Brazil. Revista Brasileira de Recursos Hídricos, v. 26, 1-13. https://doi.org/10.1590/2318-0331.262120210097.
Shin, Y.; Kim, T.; Hong, S.; Lee, S.; Lee, E.; Hong, S.; Lee, C. S.; Kim, T.; Park, M., Park, J.; Heo, T., 2020. Prediction of Chlorophyll-a Concentrations in the Nakdong River Using Machine Learning Methods. Water, v. 12, (6), 1822. https://doi.org/10.3390/w12061822.
Shuvo, A.; O’Reilly, C.; Blagrave, K.; Ewins, C.; Filazzola, A.; Gray, D.; Mahdiyan, O.; Moslenko, L.; Quinlan, R.; Sharma, S., 2021. Total phosphorus and climate are equally important predictors of water quality in lakes. AquaticSciences, v. 83, (1), 16. https://doi.org/10.1007/s00027-021-00776-w.
Siswanto, E.; Sarker, M.L.R.; Peter, B.N., 2022. Spatial variability of nutrient sources determining phytoplankton Chlorophyll-a concentrations in the Bay of Bengal. APN Science Bulletin, v. 12, (1), 66-74. https://doi.org/10.30852/sb.2022.1834.
Soares, L.; Silva, T.; Vinçon-Leite, B.; Eleutério, J. C.; Lima, L.R.; Nascimento, N., 2019. Modelling drought impacts on the hydrodynamics of a tropical water supply reservoir. Inland Waters, v. 9, (4), 422-437. https://doi.org/10.1080/20442041.2019.1596015.
Souza, E.; Studart, T.; Pinheiro, M.; Campos, J., 2017. Segurança hídrica do reservatório Castanhão-CE: aplicação da matriz de sistematização institucional. Engenharia Sanitária e Ambiental, v. 22, (5), 877-887. https://doi.org/10.1590/s1413-41522017160289.
Wiegand, M.C.; Nascimento, A.T.P.; Costa, A.C.; Lima Neto, I.E., 2020. avaliação de nutriente limitante da produção algal em reservatórios do semiárido brasileiro. Brazilian Journal of Environmental Sciences (RBCIAMB), v. 55, (4), 456-478. https://doi.org/10.5327/Z2176-947820200681.
Wiegand, M.C.; Nascimento, A.T.P.; Costa, A.C.; Lima Neto, I.E., 2021. Trophic state changes of semi-arid reservoirs as a function of the hydro-climatic variability. Journal of Arid Environments, v. 184, 104321. https://doi.org/10.1016/j.jaridenv.2020.104321.
Wilkinson, G.M.; Grayson, K.L.; Buelo, C.D.; Pace, M.L., 2021. No evidence of widespread algal bloom intensification in hundreds of lakes. Frontiers in Ecology and the Environment, v. 20, (1), 16-21. https://doi.org/10.1002/fee.2421.
Wu, X.; Teng, M.; Du, Y.; Qianqian, J.; Shen, S.; Liu, W., 2021. Phosphorus cycling in freshwater lake sediments: Influence of seasonal water level fluctuations. Science of the Total Environment, v. 792, 148383. https://doi.org/10.1016/j.scitotenv.2021.148383.
Yu, G.; Zhang, S.; Qin, W.; Guo, Y.; Zhao, R.; Liu, C.; Wang, C.; Li, D.; Wang, Y., 2022. Effects of nitrogen and phosphorus on chlorophyll a in lakes of China: a meta-analysis. Environmental Research Letters, v. 17, (7), 074038. https://doi.org/10.1088/1748-9326/ac7d64.
Yuan, L.; Jones, J., 2020. Rethinking phosphorus-chlorophyll relationships in lakes. Limnology and Oceanography, v. 65, (8), 1847-1857. https://doi.org/10.1002/lno.11422.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.