Assessment of economic impacts in flood events in Lages/SC, Brazil
DOI:
https://doi.org/10.5327/Z2176-94781486Keywords:
flooding; mitigation; socio-hydrology; HEC-FDA; urban growth.Abstract
Flood processes become increasingly harmful to communities due to factors such as climate change and land use. This study aims to evaluate the economic damages of flood events in an area of the urban basins of Lages/SC. Thus, four plans were considered for economic evaluation: one referring to conditions without protective measures and three with the application of elevation of structures at different heights, as well as two scenarios of the evolution of urban occupation. The rainfalls were obtained through the Gumbel probabilistic model to estimate the maximum accumulated precipitations over 5 days, with the hydrological modeling carried out at the HEC-HMS. The hydrodynamic modeling was performed in HEC-RAS through the simulation of a 1D model. The HEC-FDA model was used to perform the risk reduction analysis of damage caused by floods, where the expected annual damages (EAD) were calculated for the four proposed plans as well as for the urban growth scenarios. The results showed that the application of the mitigating measure of raising the structures reduced the EAD by up to 83.10%. As for the scenario of the evolution of urban growth, there was an increase in EAD of 62.09%, in the interval of 20 years. The HEC-FDA model has been demonstrated as good software for assessing the economic damage of floods in different scenarios, showing results that can help decision-makers in the development of public policies.
Downloads
References
Adnan, M.S.G.; Abdullah, A.Y.M.; Dewan, A.; Hall, J.W., 2020. The effects of changing land use and flood hazard on poverty in Coastal Bangladesh. Land Use Policy, v. 99, 104868. https://doi.org/10.1016/j.landusepol.2020.104868.
Ajjur, S.B.; Al-Ghamdi, S.G., 2022. Exploring urban growth–climate change–flood risk nexus in fast growing cities. Scientific Reports, v. 12, (1), 12265. https://doi.org/10.1038/s41598-022-16475-x.
Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
Alves, A.; Bianchini, C.D.; Malheiros, M.; Quartieri, M.T.; Salvador, P.F.; Eckhardt, R.R., 2013. Correlação entre o Nível Atingido e os Prejuízos Causados pelas Inundações do Rio Taquari no Município de Cruzeiro do Sul-RS. Destaques Acadêmicos, v. 5, (4), 217-229.
Arrighi, C.; Rossi, L.; Trasforini, E.; Rudari, R.; Ferraris, L.; Brugioni, M.; Franceschini, S.; Castelli, F., 2018. Quantification of Flood Risk Mitigation Benefits: A Building-Scale Damage Assessment through the RASOR Platform. Journal of Environmental Management, v. 207, 92-104. https://doi.org/10.1016/j.jenvman.2017.11.017.
Associação Brasileira de Normas Técnicas (ABNT), 2001. NBR 14653-1: Avaliação de bens Parte 1: Procedimentos gerais. Rio de Janeiro: ABNT, 11 p.
Avashia, V.; Garg, A., 2020. Implications of land use transitions and climate change on local flooding in urban areas: an assessment of 42 Indian cities. Land Use Policy, v. 95, 104571. https://doi.org/10.1016/j.landusepol.2020.104571.
Back, A.J.; Bonfante, F.M., 2021. Evaluation of generalized extreme value and gumbel distributions for estimating maximum daily rainfall. Brazilian Journal of Environmental Sciences, v. 56, (4), 654-664. https://doi.org/10.5327/Z217694781015.
Batista, L.; Ribeiro Neto, A.; Coutinho, R., 2020. Flood damage analysis: a Brazilian case study. Journal of Urban and Environmental Engineering, v. 14, (1), 150-160. https://doi.org/10.4090/juee.2020.v14n1.150160.
Carter, W.N., 2008. Disaster management: a disaster manager’s handbook. Philipines: Asian Development Bank, 416 p.
Chen, Y.; Wang, Y.; Zhang, Y.; Luan, Q.; Chen, X., 2020a. Flash floods, land-use change, and risk dynamics in mountainous tourist areas: a case study of the Yesanpo Scenic Area, Beijing, China. International Journal of Disaster Risk Reduction, v. 50, 101873. https://doi.org/10.1016/j.ijdrr.2020.101873.
Chen, X.; Zhang, H.; Chen, W.; Huang, G., 2020b. Urbanization and climate change impacts on future flood risk in the Pearl River Delta under shared socioeconomic pathways. Science of the Total Environment, v. 762, 143144. https://doi.org/10.1016/j.scitotenv.2020.143144.
Companhia Ambiental do Estado de São Paulo (CETESB), 1986. Drenagem urbana: manual de projeto. 3. ed. São Paulo: CETESB, 464 p.
Corsi, A.C.; Azevedo, P.B.M.; Gramani, M.F., 2012. Damage valuation arising from flood in São Luiz do Paraitinga (SP). Revista de Gestão Ambiental e Sustentabilidade, v. 1, (2), 124-142. https://doi.org/10.5585/geas.v1i2.26.
Cunha, S.; Taveira-Pinto, F., 2011. Application of a Flood Risk Analysis Methodology to the River Banks of Peso Da Régua. In: Jornadas de Hidráulica, Recursos Hídricos e Ambiente. Anais, (2), 103-112.
DiFrancesco, K.; Gitelman, A.; Purkey, D., 2020. Bottom-up assessment of climate risk and the robustness of proposed flood management strategies in the American River, CA. Water, v. 12, (3), 907. https://doi.org/10.3390/w12030907.
Disse, M.; Johnson, T.G.; Leandro, J.; Hartmann, T., 2020. Exploring the relation between flood risk management and flood resilience. Water Security, v. 9, 100059. https://doi.org/10.1016/j.wasec.2020.100059.
Fang, Y.; Jawitz, J.W., 2019. The evolution of human population distance to water in the USA from 1790 to 2010. Nature Communications, v. 10, (1), 430. https://doi.org/10.1038/s41467-019-08366-z.
Farias Asmus, G.; Mello, A.Y.; Seixas, S.R.C.; Batistella, M., 2013. Análise sociodemográfica da distribuição espacial de ocorrências de diarréias agudas em áreas de risco de inundação, Caraguatatuba-SP. Revista Vitas, (6), 1-26.
Feng, B.; Zhang, Y.; Bourke, R., 2021. Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, v. 106, 613-627. https://doi.org/10.1007/s11069-020-04480-0.
Fox-Rogers, L.; Devitt, C.; O’Neill, E.; Brereton, F.; Clinch, J.P., 2016. Is there really “nothing you can do”? Pathways to enhanced flood-risk preparedness. Journal of Hydrology, v. 543, (part b), 330-343. https://doi.org/10.1016/j.jhydrol.2016.10.009.
Gharari, S.; Hrachowitz, M.; Fenicia, F.; Savenije, H.H.G, 2011. Hydrological landscape classification: Investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrology and Earth System Sciences, v. 15, (11), 3275-3291. https://doi.org/10.5194/hess-15-3275-2011.
Herrmann, M.L.P., 2014. Atlas de desastres naturais do estado de Santa Catarina: período de 1980 a 2010. Florianópolis: IHGSC, 219 p.
Jacob, A.C.P.; Rezende, O.M.; Sousa, M.M.; Ribeiro, L.B.F.; Oliveira, A.K.B.; Arrais, C.M.; Miguez, M.G, 2019. Use of detention basin for flood mitigation and urban requalification in Mesquita, Brazil. Water Science and Technology, v. 79, (11), 2135-2144. https://doi.org/10.2166/wst.2019.212.
Koko, A.F.; Yue, W.; Abubakar, G.A.; Hamed, R.; Alabsi, A.A.N., 2021. Analyzing urban growth and land cover change scenario in Lagos, Nigeria using multi-temporal remote sensing data and GIS to mitigate flooding. Geomatics, Natural Hazards And Risk, v. 12, (1), 631-652. https://doi.org/10.1080/19475705.2021.1887940.
Lamberty, D.; Mendonça, R.R., 2018. Setorização de áreas em alto e muito alto risco a movimentos de massa, enchentes e inundações. Lages: CPRM.
Lee, J.; Kim, D.; Kim, J.; Han, D.; Kim, H.S., 2015. Flood damage reduction plan using HEC-FDA Model. Journal of Wetlands Research, v. 17, (3), 237-244. https://doi.org/10.17663/jwr.2015.17.3.237.
Lehman, W., 2016. Lifecycle problems in consequence estimation. E3S Web of Conferences, v. 7, (10), 05010. https://doi.org/10.1051/e3sconf/20160705010.
Leite, M.L.; Steffens, S.R., 2018. Desastres naturais: aspectos psicológicos e transtorno de estresse pós-traumático oriundos de uma inundação. Anuário Pesquisa e Extensão Unoesc, v. 3, e19667. (Accessed Apr 18, 2023) at:. https://periodicos.unoesc.edu.br/apeusmo/article/view/19667.
Lemos, M.R.; Becegato, V.A.; Becegato, V.R.; Rosini, D.N., 2021. Estudo do desenvolvimento urbano da bacia hidrográfica do Rio Ponte Grande, em Lages/SC. Revista Ibero-Americana de Ciências Ambientais, v. 12, (1), 347-361. https://doi.org/10.6008/CBPC2179-6858.2021.001.0029.
Liu, J.; Wang, S.Y.; Li, D.M., 2014. The analysis of the impact of land-use changes on flood exposure of Wuhan in Yangtze River Basin, China. Water Resources Management, v. 28, (9), 2507-2522. https://doi.org/10.1007/s11269-014-0623-1.
Liz, M.S.M., 2018. Influência do Rio Caveiras nas Inundações dos Rios Carahá e Ponte Grande. Dissertação de Mestrado, Curso de Ciências Ambientais, Universidade do Estado de Santa Catarina, Lages. Retrieved 2020-11-28, from https://pergamumweb.udesc.br/biblioteca/index.php.
Machado, M.L.; Nascimento, N.; Baptista, M.; Gonçalves, M.; Silva, A.; Lima, J.C.; Dias, R.; Silva, A., 2005. Curvas de danos de profundidade versus profundidade de submersão: desenvolvimento de metodologia. Revista de Gestão de Água da América Latina, v. 2, (1), 35-52.
Marcelino, E.V.; Nunes, L.H.; Kobiyama, M., 2006. Mapeamento de risco de desastres naturais do estado de Santa Catarina. Caminhos de Geografia, v. 8, (17), 72-84. https://doi.org/10.14393/RCG71715273
Martínez-Gomariz, E.; Forero-Ortiz, E.; Guerrero-Hidalga, M.; Castán, S.; Gómez, M., 2020. Flood Depth‒Damage Curves for Spanish Urban Areas. Sustainability, v. 12, (7), 2666. https://doi.org/10.3390/su12072666.
Mas, A.D.P., 2015. Study on flood management plan in Surabaya City. Journal of the Civil Engineering Forum, v. 1, (2), 51-56. https://doi.org/10.22146/jcef.23891.
Menne, B.; Murray, V., 2013. Floods in the WHO European Region: Health Effects and Their Prevention (Accessed Apr 18, 2023) at:. http://www.euro.who.int/pubrequest.
Mianabadi, A.; Derakhshan, H.; Davary, K.; Hasheminia, S.M.; Hrachowitz, M., 2020. A novel idea for groundwater resource management during megadrought events. Water Resources Management, v. 34, (5), 1743-1755. https://doi.org/10.1007/s11269-020-02525-4.
Minervino, A.C.; Duarte, E.C., 2016. Loss and damage affecting the public health sector and society resulting from flooding and flash floods in Brazil between 2010 and 2014 – based on data from National and Global Information Systems. Ciência e Saúde Coletiva, v. 21, (3), 685-694. https://doi.org/10.1590/1413-81232015213.19922015.
Mohammadi, S.A.; Nazariha, M.; Mehrdadi, N., 2014. Flood damage estimate (quantity), using HEC-FDA model case study: the Neka River. Procedia Engineering, v. 70, 1173-1182. https://doi.org/10.1016/j.proeng.2014.02.130.
Mombach, G.N.N.; Wahrlich, J.; Clauberg, A.P.C.; Beninca, L.S.; Simioni, F.J., 2018. Valoração ambiental de um rio urbano: uma aplicação do método de valoração contingente em Lages, Santa Catarina. Brazilian Journal of Environmental Sciences, (47), 116-129. https://doi.org/10.5327/Z2176-947820180272.
Moosakhaani, M.; Salimi, L.; Sadatipour, M.T., 2020. Developing flood economic loss evaluation model in residential and commercial sectors case study: Darband and Golab Darreh Rivers, v. 4, (3), 215-229. https://doi.org/10.22097/eeer.2020.212510.1127.
Moosakhaani, M.; Salimi, L.; Sadatipour, M.T.; Niksokhan, M.H., 2022. Game theoretic approach for flood risk management considering a financial model. Environmental Engineering Research, v. 27, (6), 1-11. https://doi.org/10.4491/eer.2021.368.
Müller, M.F.; Levy, M.C., 2019. Complementary vantage points: integrating hydrology and economics for sociohydrologic knowledge generation. Water Resources Research, v. 55, (4), 2549-2571. https://doi.org/10.1029/2019WR024786.
Nithila Devi, N.; Sridharan, B.; Kuiry, S.N., 2019. Impact of urban sprawl on future flooding in Chennai City, India. Journal of Hydrology, v. 574, 486-496. https://doi.org/10.1016/j.jhydrol.2019.04.041.
Nofal, O.M.; Lindt, J.W.V., 2021. High-resolution flood risk approach to quantify the impact of policy change on flood losses at community-level. International Journal of Disaster Risk Reduction, v. 62, 102429. https://doi.org/10.1016/j.ijdrr.2021.102429.
Ozonur, D.; Pobocikova, I.; Souza, A., 2021. Statistical analysis of monthly rainfall in Central West Brazil using probability distributions. Modeling Earth Systems and Environment, v. 7, 1979-1989. https://doi.org/10.1007/s40808-020-00954-z.
Paterson, D.L.; Wright, H.; Harris, P.N.A., 2018. Health risks of flood disasters. Clinical Infectious Diseases., v. 67, (9), 1450-1454. https://doi.org/10.1093/cid/ciy227.
Pereira, D.C.; Duarte, L.R.; Sarmento, A.P., 2017. Determinação da curva de intensidade, duração e frequência do município de Ipameri – Goiás. Civil Engineering e-Journal. v. 13, (2), 233-246. https://doi.org/10.5216/reec.v13i2.43330.
Peters, D.L.; Caissie, D.; Monk, W.A.; Rood, S.B.; St-hilaire, A., 2015. An ecological perspective on floods in Canada. Canadian Water Resources Journal, v. 41, (1-2), 288-306. https://doi.org/10.1080/07011784.2015.1070694.
Portela, F.C.; Kobiyama, M.; Goerl, R.F., 2020. Panorama brasileiro da relação entre leptospirose e inundações. Revista Geosul, v. 35, (75), 711-734. https://doi.org/10.5007/1982-5153.2020v35n75p711.
Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Asaduzzaman, M.; Dewan, A., 2020. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: current trends, issues and challenges. Sustainable Cities and Society, v. 62, 102373. https://doi.org/10.1016/j.scs.2020.102373.
Qi, H.; Altinakar, M.S., 2011. A GIS-based decision support system for integrated flood management under uncertainty with two dimensional numerical simulations. Environmental Modelling and Software, v. 26, (6), 817-821. https://doi.org/10.1016/j.envsoft.2010.11.006.
Rafaeli Neto, S.L., 2019a. Aerolevantamento da planície topográfica de inundações. Lages; Universidade do Estado de Santa Catarina, 205 p.
Rafaeli Neto, S.L., 2019b. Relatório Técnico - Parte 1: Modelagem Hidrológica. Lages: Universidade do Estado de Santa Catarina, 67 p.
Rafaeli Neto, S.L.; Ricardo, G.S.; Mendes, C.F.; Cunha, M.B., 2015. Modelagem hidráulica dos eventos de inundações em Lages (SC). In: Congresso Brasileiro de Gestão Ambiental, 6, 1-7. Anais. Porto Alegre.
Reichstein, M.; Riede, F.; Frank, D., 2021. More floods, fires and cyclones - plan for domino effects on sustainability goals. Nature, v. 592, (7854), 347-349. https://doi.org/10.1038/d41586-021-00927-x.
Robinson, P.J.; Botzen, W.J.W., 2020. Flood insurance demand and probability weighting: the influences of regret, worry, locus of control and the threshold of concern heuristic. Water Resources and Economics, v. 30, 100144. https://doi.org/10.1016/j.wre.2019.100144.
Rojas, O.; Mardones, M.; Rojas, C.; Martínez, C.; Flores, L., 2017. Urban growth and flood disasters in the coastal river basin of South-Central Chile (1943–2011). Sustainability, v. 9, (2), 195. https://doi.org/10.3390/su9020195.
Ruig, L.T.; Haer, T.; Moel, H.; Botzen, W.J.W.; Aerts, J.C.J.H., 2019. A micro-scale cost-benefit analysis of building-level flood risk adaptation measures in Los Angeles. Water Resources and Economics, v. 32, 100147. https://doi.org/10.1016/j.wre.2019.100147.
Shokri, A.; Sabzevari, S.; Hashemi, S.A., 2020. Impacts of flood on health of Iranian population: infectious diseases with an emphasis on parasitic infections. Parasite Epidemiology and Control, v. 9, e00144. https://doi.org/10.1016/j.parepi.2020.e00144.
Shrestha, B.B.; Kawasaki, A.; Zin, W.W., 2021. Development of flood damage assessment method for residential areas considering various house types for Bago Region of Myanmar. International Journal of Disaster Risk Reduction, v. 66, 102602. https://doi.org/10.1016/j.ijdrr.2021.102602.
Silva, E.D., 2015. Avaliação econômica de danos causados por inundações: aplicação ao município de Montenegro-RS. In: Simpósio Brasileiro de Recursos Hidrícos, 23, 1-10. Anais.
Singh, V.P., 2018. Hydrologic modeling: progress and future directions. Geoscience Letters, v. 5. https://doi.org/10.1186/s40562-018-0113-z.
Sörensen, J.; Persson, A.; Sternudd, C.; Aspegren, H.; Nilsson, J.; Nordström, J.; Jönsson, K.; Mottaghi, M.; Becker, P.; Pilesjö, P.; Larsson, R.; Berndtsson, R.; Mobini, S., 2016. Re-thinking urban flood management-time for a regime shift. Water, v. 8, (8), 332. https://doi.org/10.3390/w8080332.
Stakhiv, E.Z., 2021. The centrality of engineering codes and risk-based design standards in climate adaptation strategies. Water Policy, v. 23, (Suppl. 1), 106-127. https://doi.org/10.2166/wp.2021.345.
Sukhwani, V.; Gyamfi, B.A.; Zhang, R.; Alhinai, A.M.; Shaw, R., 2019. Understanding the barriers restraining effective operation of flood early. International Journal of Disaster Risk Management, v. 1, (2), 1-17. https://doi.org/10.18485/ijdrm.2019.1.2.1.
Svetlana, D.; Radovan, D.; Ján, D., 2015. The economic impact of floods and their importance in different regions of the world with emphasis on Europe. Procedia Economics and Finance, v. 34, 649-655. https://doi.org/10.1016/s2212-5671(15)01681-0.
Talbot, C.J.; Bennett, E.M.; Cassell, K.; Hanes, D.M.; Minor, E.C.; Paerl, H.; Raymond, P.A.; Vargas, R.; Vidon, P.G.; Wollheim, W., 2018. The impact of flooding on aquatic ecosystem services. Biogeochemistry, v. 141, 439-461. https://doi.org/10.1007/s10533-018-0449-7.
Tiepolo, M.; Galligari, A., 2021. Land use policy urban expansion-flood damage nexus: evidence from the Dosso. Land Use Policy, v. 108, 105547. https://doi.org/10.1016/j.landusepol.2021.105547.
Tramblay, Y.; Mimeau, L.; Neppel, L.; Vinet, F.; Sauquet, E., 2019. Detection and Attribution of flood trends in Mediterranean basins. Hydrology And Earth System Sciences, v. 23, (11), 4419-4431. https://doi.org/10.5194/hess-23-4419-2019.
United States Army Corps of Engineers (USACE), 2003. EGM 04-01: Generic depth-damage relationships for residential structures with basements. CECW-PG, 17 p.
United States Army Corps of Engineers (USACE), 2016. HEC-FDA: Flood Damage Reduction Analysis - User’s Manual. CECW-PG, Davis-CA, 392 p.
Van Dau, Q.; Kuntiyawichai, K.; Plermkamon, V., 2017. Quantification of flood damage under potential climate change impacts in Central Vietnam. Irrigation and Drainage, v. 66, (5), 842-853. https://doi.org/10.1002/ird.2160.
Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.L.; Scolobig, A.; Blöschl, G., 2014. Insights from socio-hydrology modelling on dealing with flood risk - roles of collective memory, risk-taking attitude and trust. Journal of Hydrology, v. 518, (part A), 71-82. https://doi.org/10.1016/j.jhydrol.2014.01.018.
Walker-Springett, K.; Butler, C.; Adger, W.N., 2017. Wellbeing in the aftermath of floods. Health & Place, v. 43, 66-74. https://doi.org/10.1016/j.healthplace.2016.11.005.
World Meteorological Organization (WMO), 2020. WMO Statement on the State of the Global Climate in 2019. Switzerland: WMO, 44 p.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.