Groundwater management in the state of Piauí (Brazil) on the climate change context

Authors

DOI:

https://doi.org/10.5327/Z2176-94781485

Keywords:

IPCC scenarios; legal and institutional framework; aquifer systems; changes in the hydrological cycle; management system

Abstract

This article aims to evaluate the current state of groundwater management in the state of Piauí, considering the scenario of climate change and its adverse effects on aquifers. The analysis is based on the socioeconomic reality of the state, the availability and demand of groundwater resources, and the level of management and the possible impacts of climate change on the state. What is noticeable is that for the projected scenarios of climate change in the state, groundwater becomes a strategic source in mitigating the effects of climate change; however, the diagnosis produced shows that the state has already been using this resource too much, but without an efficient control of the public power. This combination tends toward a pessimistic view of both the state and groundwater in relation to climate change.

Downloads

Download data is not yet available.

References

Afruzi, A.; Zare Abyaneh, H.; Abdolabadi, H., 2021. Local Strategies to Manage Groundwater Depletion under Climate Change Scenarios—a Case Study: Hamedan-Bahar Plain (Iran). Arabian Journal of Geosciences, v. 14, 1548. https://doi.org/10.1007/s12517-021-07773-1.

Agência Nacional de Águas e Saneamento Básico (ANA), 2016. Sistemas Aquíferos. Sistema Nacional de Informações sobre Recursos Hídricos. (Accessed February 3, 2023) at:. https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/metadata/3ec60e4f-85ea-4ba7-a90c-734b57594f90.

Agência Nacional de Águas e Saneamento Básico (ANA), 2021. Atlas irrigação: uso da água na agricultura irrigada. Brasilía: ANA.

Ahmed, M.; Aqnouy, M.; Stitou El Messari, J., 2021. Sustainability of Morocco’s Groundwater Resources in Response to Natural and Anthropogenic Forces. Journal of Hydrology, v. 603, part A, 126866. https://doi.org/10.1016/j.jhydrol.2021.126866.

Ali, S.; Wang, Q.; Liu, D.; Fu, Q.; Mafuzur Rahaman, M.; Abrar Faiz, M.; Jehanzeb Masud Cheema, M., 2022. Estimation of Spatio-Temporal Groundwater Storage Variations in the Lower Transboundary Indus Basin Using GRACE Satellite. Journal of Hydrology, v. 605, 127315. https://doi.org/10.1016/j.jhydrol.2021.127315.

Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U., 2020. Groundwater System and Climate Change: Present Status and Future Considerations. Journal of Hydrology, v. 589, 125163. https://doi.org/10.1016/j.jhydrol.2020.125163.

Assaoui, N. el; Sadok, A.; Merimi, I., 2021. Impacts of Climate Change on Moroccan’s Groundwater Resources: State of Art and Development Prospects. Materials Today: Proceedings, v. 45, (Part 8), 7690-7696. https://doi.org/10.1016/j.matpr.2021.03.220.

Ballarin, A.S.; Sone, J.S.; Gesualdo, G.C.; Schwamback, D.; Reis, A.; Almagro, A.; Wendland, E.C., 2023. CLIMBra - Climate Change Dataset for Brazil. Scientific Data, v. 10, (1), 47. https://doi.org/10.1038/s41597-023-01956-z.

Brambati, A.; Carbognin, L.; Quaia, T.; Teatini, P.; Tosi, L., 2003. The Lagoon of Venice: Geological Setting, Evolution and Land Subsidence. Episodes, v. 26, (3), 264-265. https://doi.org/10.18814/epiiugs/2003/v26i3/020.

Brasil, 2021. Projeto MAPBIOMAS. Série anual de mapas de cobertura e uso do solo do Brasil. Coleção 6.

Brimblecombe, P.; Hayashi, M.; Futagami, Y., 2020. Mapping Climate Change, Natural Hazards and Tokyo’s Built Heritage. Atmosphere, v. 11, (7), 680. https://doi.org/10.3390/atmos11070680.

Brito, S.S.B.; Cunha, A.P.M.A.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Carvalho, M.A., 2018. Frequency, Duration and Severity of Drought in the Semiarid Northeast Brazil Region. International Journal of Climatology, v. 38, (2), 517-529. https://doi.org/10.1002/joc.5225.

Companhia Nacional de Abastecimento (CONAB), 2021. Series Históricas das Safras. Brasil: CONAB.

Delazeri, L.M.M.; Cunha, D.A.; Vicerra, P.M.M.; Oliveira, L.R., 2022. Rural Outmigration in Northeast Brazil: Evidence from Shared Socioeconomic Pathways and Climate Change Scenarios. Journal of Rural Studies, v. 91, 73-85. https://doi.org/10.1016/j.jrurstud.2022.03.004.

Dragoni, W.; Sukhija, B.S., 2008. Climate Change and Groundwater: A Short Review. Geological Society Special Publication.

Feitosa, F.A.C., 1990. Estudo Hidrogeológico do Aquífero Cabeças no Médio do Vale do Rio Gurguéia/PI. (Dissertação de Mestrado), Universidade Federal de Pernambuco, Recife.

Feitosa, F.A.C.; Feitosa, E.C.; Demetrio, J.G.A., 2012. O Vale do Gurguéia: Uma Zona Estratégica De Produção. Congresso Brasileiro de Águas Subterrâneas, v. 5, (1), 2-5.

Fernandes, G.S.T.; Lima, E.A.; Neto, A.M.; Júnior, A.S.G., 2020. Variação interdecadal de elementos climáticos no estado do Piauí (Brasil). Revista Brasileira de Meio Ambiente, v. 8, (2), 136-146.

Food and Agriculture Organization (FAO), 2017. The Future of Food and Agriculture and Challenges. FAO.

Gonçalves, R.D.; Stollberg, R.; Weiss, H.; Chang, H.K., 2020. Using GRACE to Quantify the Depletion of Terrestrial Water Storage in Northeastern Brazil: The Urucuia Aquifer System. Science of the Total Environment, v. 705, 135845. https://doi.org/10.1016/j.scitotenv.2019.135845.

Gorelick, S.M.; Zheng, C., 2015. Global Change and the Groundwater Management Challenge. Water Resources Research, v. 51, (5), 3031-3051. https://doi.org/10.1002/2014wr016825.

Governo do Estado de São Paulo, 2017. Situação dos recursos hídricos no estado de São Paulo: 2015. São Paulo: Governo do Estado de São Paulo.

Hirata, R.; Conicelli, B.P., 2012. Groundwater Resources in Brazil: A Review of Possible Impacts Caused by Climate Change. Anais da Academia Brasileira de Ciencias, v. 84, (2), 297-312. https://doi.org/10.1590/s0001-37652012005000037.

Holman, I.P.; Allen, D.M.; Cuthbert, M.O.; Goderniaux, P., 2012. Towards Best Practice for Assessing the Impacts of Climate Change on Groundwater. Hydrogeology Journal, v. 20, 1-4. https://doi.org/10.1007/s10040-011-0805-3.

Instituto Brasileiro de Geografia e Estatística (IBGE), 2013a. Censo 2010. SIDRA - Sistema IBGE de Recuperação Automática. (Accessed August 17, 2017) at:. https://sidra.ibge.gov.br/tabela/200#resultado.

Instituto Brasileiro de Geografia e Estatística (IBGE), 2013b. Limites das Unidades da Federação 2013. Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH). (Accessed February 3, 2023) at:. https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/metadata/5fdd2c95-0280-453d-9e25-c3a291537126.

Instituto Brasileiro de Geografia e Estatística (IBGE), 2020. Produto Interno Bruto. IBGE.

Instituto Nacional de Meteorologia (INMET), 2023. Normais Climatológicas. (Accessed February 3, 2023) at:. https://clima.inmet.gov.br/GraficosClimatologicos/DF/83377

Intergovernmental Panel on Climate Change (IPCC), 2021. Technical Summary. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Climate Change 2021: The Physical Science Basis. 3949 p.

Ishola, K.S.; Fatoyinbo, A.A.; Hamid-Mosaku, A.I.; Okolie, C.J.; Daramola, O.E.; Lawal, T.O., 2022. Groundwater Potential Mapping in Hard Rock Terrain Using Remote Sensing. Geospatial and Aeromagnetic Data, Geosystems and Geoenvironment, v. 2, (1), 100107. https://doi.org/10.1016/j.geogeo.2022.100107.

Jannis, E.; Adrien, M.; Annette, A.; Peter, H., 2021. Climate Change Effects on Groundwater Recharge and Temperatures in Swiss Alluvial Aquifers. Journal of Hydrology X, v. 11, 100071. https://doi.org/10.1016/j.hydroa.2020.100071.

Jayakumar, R.; Lee, E., 2017. Climate Change and Groundwater Conditions in the Mekong Region: A Review. Journal of Groundwater Science and Engineering, v. 5, (1), 14-30.

Kanema, E.M.; Gumindoga, W., 2022. Effects of Changing Climate on the Groundwater Potential: A Case of Chongwe and Rufunsa Districts along the Chongwe River Catchment, Zambia. Physics and Chemistry of the Earth, Parts A/B/C, v. 127, 103192. https://doi.org/10.1016/j.pce.2022.103192.

Kumar, C.P., 2012. Climate Change and Its Influence on Groundwater Resources. Research Inventy: International Journal of Engineering and Science, v. 1, (5), 43-60. https://doi.org/10.2307/24092675.

Lall, U.; Josset, L.; Russo, T., 2020. A Snapshot of the World’s Groundwater Challenges. Annual Review of Environment and Resources, v. 45, 171-194. https://doi.org/10.1146/annurev-environ-102017.

Leal Filho, W.; Setti, A.F.F.; Azeiteiro, U.M.; Lokupitiya, E.; Donkor, F.K.; Etim, N.A.N.A.; Matandirotya, N., Olooto, F.M.; Sharifi, A.; Nagy, G.J.; Djekiv, I., 2022. An Overview of the Interactions between Food Production and Climate Change. Science of the Total Environment, v. 838, (part 3), 156438. https://doi.org/10.1016/j.scitotenv.2022.156438.

Mahmoodi, N.; Kiesel, J.; Wagner, P.D.; Fohrer, N., 2021. Spatially Distributed Impacts of Climate Change and Groundwater Demand on the Water Resources in a Wadi System. Hydrology and Earth System Sciences, v. 25, (9), 5065-5081. https://doi.org/10.5194/hess-25-5065-2021.

Melo, D. de C.D.; Wendland, E., 2017. Shallow Aquifer Response to Climate Change Scenarios in a Small Catchment in the Guarani Aquifer Outcrop Zone. Anais da Academia Brasileira de Ciências, v. 89, (Suppl. 1), 391-406. https://doi.org/10.1590/0001-3765201720160264.

Mente, A., 2008. A água subterrânea no Brasil. In: Feitosa, F. A. C.; Filho, J. M.; Feitosa, E. C.; Demetrio, J. G. A. (Eds.), Hidrogeologia: Conceitos e Aplicações. Rio de Janeiro: CPRM, Serviço Geológico do Brasil, p. 20.

Monteiro, P.B.C.L.; Cabral, J.J.S.P., 2018. Análise SWOT da gestão de águas subterrâneas no Piauí. Revista de Gestão de Água da América Latina, v. 15, (1), e5. https://doi.org/10.21168/rega.v15e5.

Ouatiki, H.; Boudhar, A.; Leblanc, M.; Fakir, Y.; Chehbouni, A., 2022. When Climate Variability Partly Compensates for Groundwater Depletion: An Analysis of the GRACE Signal in Morocco. Journal of Hydrology: Regional Studies, v. 42, 101177. https://doi.org/10.1016/j.ejrh.2022.101177.

Painel Brasileiro de Mudanças Climáticas, Mudanças Climáticas e Cidades (PBMC), 2016. Relatório Especial do Painel Brasileiro de Mudanças Climáticas. Rio de Janeiro.

Pasta Cordeiro, M.; Silva Junior, G.C. da; Dereczynski, C.P.; Chrispim, Z.M.P.; Condesso de Melo, M.T., 2021. Analysis of Indicators of Climate Extremes and Projection of Groundwater Recharge in the Northern Part of the Rio de Janeiro State, Brazil. Environment, Development and Sustainability, v. 23, 18311-18336. https://doi.org/10.1007/s10668-021-01441-w.

Rebouças, A.C., 2008. Importância da água subterrâneaIn: Feitosa, F. A. C.; Filho, J. M.; Feitosa, E. C.; Demetrio, J. G. A. (Eds.), Hidrogeologia: Conceitos e Aplicações. Rio de Janeiro: CPRM, Serviço Geológico do Brasil.

Saadatpour, A.; Izady, A.; Bailey, R.T.; Ziaei, A.N.; Alizadeh, A.; Park, S., 2022. Quantifying the Impact of Climate Change and Irrigation Management on Groundwater in an Arid Region with Intensive Groundwater Abstraction (Case Study: Neishaboor Watershed, Iran). Environmental Earth Sciences, v. 81, 531. https://doi.org/10.1007/s12665-022-10662-9.

Sayed, E.; Riad, P.; Elbeih, S.F.; Hassan, A.A.; Hagras, M., 2020. Sustainable Groundwater Management in Arid Regions Considering Climate Change Impacts in Moghra Region, Egypt. Groundwater for Sustainable Development, v. 11, 100385. https://doi.org/10.1016/j.gsd.2020.100385.

Scanlon, B.R.; Longuevergne, L.; Long, D., 2012. Ground Referencing GRACE Satellite Estimates of Groundwater Storage Changes in the California Central Valley, USA. Water Resources Research, v. 48, (4). https://doi.org/10.1029/2011wr011312.

Secretaria de Meio Ambiente e Recursos Hídricos do Piauí (SEMAR), 2010. Plano Estadual de recursos hídricos do estado do Piauí: Relatório Síntese. Teresina: SEMAR. 400 p.

Secretaria de Meio Ambiente e Recursos Hídricos do Piauí (SEMAR), 2014. Legislação ambiental do estado do Piauí, Teresina-PI: Conselho Estadual de Recursos Hídricos. SEMAR. 432 p.

Secretaria de Meio Ambiente e Recursos Hídricos do Piauí (SEMAR), 2015. Legislação de recursos hídricos do estado do Piauí, Teresina: Secretaria de Meio Ambiente e Recursos Hídricos do Estado do Piauí. SEMAR. 246 p.

Seidenfaden, I.K.; Sonnenborg, T.O.; Stisen, S.; Kidmose, J., 2022. Quantification of Climate Change Sensitivity of Shallow and Deep Groundwater in Denmark. Journal of Hydrology: Regional Studies, v. 41, 101100. https://doi.org/10.1016/j.ejrh.2022.101100.

Serviço Geológico Brasileiro (CPRM), 2015. Síntese hidrogeológica do estado do Piauí. Teresina: CPRM.

Silva, G.K. da; Silveira, C.D.S.; Silva, M.V.M. da; Marcos, A.D.; Souza, F.D.A.; Guimarães, S.O., 2020. Análise de projeções das mudanças climáticas sobre precipitação e temperatura nas regiões hidrográficas brasileiras para o século XXI. Brazilian Journal of Environmental Sciences, v. 55, (3), 420-436. https://doi.org/10.5327/z2176-947820200624.

Sistema de Informações sobre Águas Subterrâneas (SIAGAS), 2022. Serviço Geológico do Brasil (CPRM). Total de Poços e Fontes Naturais Cadastrados. (Accessed February 3, 2023). at:. http://siagasweb.cprm.gov.br/layout/.

Sistema Nacional de Informações sobre Saneamento (SNIS), 2021. Série Histórica. SNIS Água e Esgoto. (Accessed February 3, 2023) at:. http://app4.mdr.gov.br/serieHistorica/.

Smida, H.; Dassi, L.; Boukhachem, K.; Masrouhi, A., 2022. Satellite Remote Sensing and GIS-Based Multi-Criteria Analysis for the Assessment of Groundwater Potentiality in Fractured Limestone Aquifer: Case Study of Maknassy Basin, Central Tunisia. Journal of African Earth Sciences, v. 195, 104643. https://doi.org/10.1016/j.jafrearsci.2022.104643.

Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F., 2016. Land-Use Change Affects Water Recycling in Brazil’s Last Agricultural Frontier. Global Change Biology, v. 22, (10), 3405-3413. https://doi.org/10.1111/gcb.13298.

Vidal, C.L.R., 2003. Disponibilidade e Gerenciamento Sustentável Do Aquifero Serra Grande no Município de Picos-PI. Universidade de São Paulo, São Paulo.

Wu, W.Y.; Lo, M.H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.F.; Ducharne, A.; Yang, Z.L., 2020. Divergent Effects of Climate Change on Future Groundwater Availability in Key Mid-Latitude Aquifers. Nature Communications, v. 11, 3710. https://doi.org/10.1038/s41467-020-17581-y.

Downloads

Published

2023-05-31

How to Cite

Monteiro, P. B., & da Silva Pereira Cabral, J. J. (2023). Groundwater management in the state of Piauí (Brazil) on the climate change context. Revista Brasileira De Ciências Ambientais, 58(1), 45–58. https://doi.org/10.5327/Z2176-94781485

More articles by the same author(s)