In vitro co-inoculation of rhizobacteria from the semi-arid aiming at their implementation as bio-inoculants

Authors

DOI:

https://doi.org/10.5327/Z2176-94781481

Keywords:

actinobacteria; cross-feeding; diazotrophic bacteria; PGPR; rhizobia; Streptomyces

Abstract

The use of nitrogen fertilizers is of paramount importance for the supply of this nutrient to plants. However, the application of these fertilizers brings numerous environmental and health problems. An alternative to these chemical products would be the use of rhizobia — plant growth-promoting rhizobacteria naturally present in the rhizosphere and capable of carrying out biological nitrogen fixation. Through the present work, we propose the co-inoculation of Actinobacteria and rhizobia, aiming at the production of a new bio-inoculant that replaces, at least in part, nitrogen fertilization in legumes. It is expected that Actinobacteria, by producing exoenzymes, enable the growth of rhizobia in non-specific culture media for these microorganisms. Ten strains of Actinobacteria with statistically distinct cellulolytic and xylanolytic activity and seven strains of rhizobia without the aforementioned enzymatic activities were used. A co-inoculation of these microorganisms was performed in culture media containing carboxymethylcellulose (CMC) and xylan as sole carbon sources, and then their compatibility indexes (CI) were calculated. Actinobacteria strains A139 and A145 (both with CI = 0.857 in the medium with CMC and CI = 1 in the medium with xylan) showed remarkable facilitation of rhizobia growth, and had only one antagonistic relation each (both with rhizobia L9 in the medium with CMC). This biological interaction, called cross-feeding, occurs when microorganisms stimulate each other’s growth and is promising for prospecting a bio-inoculant, in addition to providing an overview of the ecological relationships that occur between plant growth-promoting rhizobacteria in the semi-arid region.

Downloads

Download data is not yet available.

References

Araujo, R.; Gupta, V.V.S.R.; Reith, F.; Bissett, A.; Mele, P.; Franco, C.M.M., 2020. Biogeography and Emerging Significance of Actinobacteria in Australia and Northern Antarctica Soils. Soil Biology and Biochemistry, v. 146, 107805. https://doi.org/10.1016/j.soilbio.2020.107805.

Atieno, M.; Herrmann, L.; Nguyen, H.T.; Phan, H.T.; Nguyen, N.K.; Srean, P.; Than, M.M.; Zhiyong, R.; Tittabutr, P.; Shutsrirung, A.; Bräu, L.; Lesueur, D., 2020. Assessment of Biofertilizer Use for Sustainable Agriculture in the Great Mekong Region. Journal of Environmental Management, v. 275, 111300. https://doi.org/10.1016/j.jenvman.2020.111300.

Bandeira, L.L.; Marques, J.S.; Mesquita, A.F.N.; Cavalcante, F.G.; Martins, S.C.S.; Martins, C.M. 2022. Production of Enzymes by Actinobacteria from Agricultural Areas of the Brazilian Semi-Arid Region. World Wide Journal of Multidisciplinary Research and Development, v. 8, (11), 128-132. https://doi.org/10.5281/zenodo.7406123.

Bao, Y.; Dolfing, J.; Guo, Z.; Chen, R.; Wu, M.; Li, Z.; Lin, X.; Feng, Y., 2021. Important Ecophysiological Roles of Non-Dominant Actinobacteria in Plant Residue Decomposition, Especially in Less Fertile Soils. Microbiome, v. 9, 84. https://doi.org/10.1186/s40168-021-01032-x.

Beckinghausen, A.; Odlare, M.; Thorin, E.; Schwede, S., 2020. From Removal to Recovery: An Evaluation of Nitrogen Recovery Techniques from Wastewater. Applied Energy, v. 263, 114616. https://doi.org/10.1016/j.apenergy.2020.114616.

Chaudhary, T.; Shukla, P., 2020. Commercial Bioinoculant Development: Techniques and Challenges. In: Shukla, P. (Ed.), Microbial Enzymes and Biotechniques. Cham: Springer, pp. 57-70. https://doi.org/10.1007/978-981-15-6895-4_4.

diCenzo, G.C.; Zamani, M.; Checcucci, A.; Fondi, M.; Griffitts, J.S.; Finan, T.M.; Mengoni, A., 2019. Multidisciplinary Approaches for Studying Rhizobium-Legume Symbioses. Canadian Journal of Microbiology, v. 65, (1), 1-33. https://doi.org/10.1139/cjm-2018-0377.

D’Souza, G.; Shitut, S.; Preussger, D.; Yousif, G.; Waschina, S.; Kost, C., 2018. Ecology and Evolution of Metabolic Cross-Feeding Interactions in Bacteria. Natural Product Reports, v. 35, (5), 455-488. https://doi.org/10.1039/c8np00009c.

Fields, B.; Moffat, E.K.; Harrison, E.; Andersen, S.U.; Young, P.W.; Friman, V., 2021. Genetic Variation Is Associated with Differences in Facilitative and Competitive Interactions in the Rhizobium Leguminosarum Species Complex. Environmental Microbiology, v. 24, (8), 3463-3485. https://doi.org/10.1111/1462-2920.15720.

Food and Agriculture Organization of the United Nations (FAO), 2022. FAOSTAT – Fertilizers indicators (Accessed March 26, 2023) at:. https://www.fao.org/faostat/en/#data/EF.

Htwe, A.Z.; Moh, S.M.; Moe, K.; Yamakawa, T., 2018. Effects of Co-Inoculation of Bradyrhizobium Japonicum SAY3-7 and Streptomyces Griseoflavus P4 on Plant Growth, Nodulation, Nitrogen Fixation, Nutrient Uptake, and Yield of Soybean in a Field Condition. Soil Science and Plant Nutrition, v. 64, (2), 222-229. https://doi.org/10.1080/00380768.2017.1421436.

Htwe, A.Z.; Moh, S.M.; Soe, K.M.; Moe, K.; Yamakawa, T., 2019. Effects of Biofertilizer Produced from Bradyrhizobium and Streptomyces Griseoflavus on Plant Growth, Nodulation, Nitrogen Fixation, Nutrient Uptake, and Seed Yield of Mung Bean, Cowpea, and Soybean. Agronomy, v. 9, (2), 77. https://doi.org/10.3390/agronomy9020077.

Htwe, A.Z.; Yamakawa, T., 2016. Low-Density Co-Inoculation with Bradyrhizobium Japonicum SAY3-7 and Streptomyces Griseoflavus P4 Promotes Plant Growth and Nitrogen Fixation in Soybean Cultivars. American Journal of Plant Sciences, v. 7, (12), 1652-1661. https://doi.org/10.4236/ajps.2016.712156.

Jabborova, D.; Kannepalli, A.; Davranov, K.; Narimanov, A.; Enakiev, Y.; Syed, A.; Elgorban, A.M.; Bahkali, A.H.; Wirth, S.; Sayyed, R.Z.; Gafur, A., 2021. Co-Inoculation of Rhizobacteria Promotes Growth, Yield, and Nutrient Contents in Soybean and Improves Soil Enzymes and Nutrients under Drought Conditions. Scientific Reports, v. 11, (1), 22081. https://doi.org/10.1038/s41598-021-01337-9.

Jose, P.A.; Maharshi, A.; Jha, B., 2021. Actinobacteria in Natural Products Research: Progress and Prospects. Microbiological Research, v. 246, 126708. https://doi.org/10.1016/j.micres.2021.126708.

Kanter, D.R.; Bartolini, F.; Kugelberg, S.; Leip, A.; Oenema, O.; Uwizeye, A., 2019. Nitrogen Pollution Policy beyond the Farm. Nature Food, v. 1, (1), 27-32. https://doi.org/10.1038/s43016-019-0001-5.

Kour, D.; Khan, S.S.; Kaur, T.; Kour, H.; Singh, G.; Yadav, A.; Yadav, A.N., 2022. Drought Adaptive Microbes as Bioinoculants for the Horticultural Crops. Heliyon, v. 8, (5), e09493. https://doi.org/10.1016/j.heliyon.2022.e09493.

Kumawat, K.C.; Singh, I.; Nagpal, S.; Sharma, P.; Gupta, R.K.; Sirari, A., 2022. Co-Inoculation of Indigenous Pseudomonas Oryzihabitans and Bradyrhizobium Sp. Modulates the Growth, Symbiotic Efficacy, Nutrient Acquisition, and Grain Yield of Soybean. Pedosphere, v. 32, (3), 438-451. https://doi.org/10.1016/s1002-0160(21)60085-1.

Kuykendall, L.D., 2015. Rhizobiaceae. Bergey’s Manual of Systematics of Archaea and Bacteria, 1-2. https://doi.org/10.1002/9781118960608.fbm00171.

Lacombe-Harvey, M.; Brzezinski, R.; Beaulieu, C., 2018. Chitinolytic Functions in Actinobacteria: Ecology, Enzymes, and Evolution. Applied Microbiology and Biotechnology, v. 102, (17), 7219-7230. https://doi.org/10.1007/s00253-018-9149-4.

Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P., 2016. Biofertilizers: A Potential Approach for Sustainable Agriculture Development. Environmental Science and Pollution Research, v. 24, (4), 3315-3335. https://doi.org/10.1007/s11356-016-8104-0.

Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R., 2021. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability, v. 13, (10), 5625. https://doi.org/10.3390/su13105625.

Miljaković, D.; Marinković, J.; Tamindžić, G.; Đorđević, V.; Tintor, B.; Milošević, D.; Ignjatov, M.; Nikolić, Z., 2022. Bio-Priming of Soybean with Bradyrhizobium Japonicum and Bacillus Megaterium: Strategy to Improve Seed Germination and the Initial Seedling Growth. Plants, v. 11, (15), 1927. https://doi.org/10.3390/plants11151927.

Mitri, S.; Foster, K.R., 2013. The Genotypic View of Social Interactions in Microbial Communities. Annual Review of Genetics, v. 47, (1), 247-273. https://doi.org/10.1146/annurev-genet-111212-133307.

Prasad, M.; Srinivasan, R.; Chaudhary, M.; Choudhary, M.; Jat, L.K., 2019. Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. PGPR Amelioration in Sustainable Agriculture, 129-157. https://doi.org/10.1016/b978-0-12-815879-1.00007-0.

Pinheiro, M.S.; Sousa, J.B.; Bertini, C.H.C.M.; Martins, S.C.S.; Martins, C.M., 2014. Isolation and Screening of Rhizobial Strains Native From Semi-Arid Tolerant to Environmental Stress. Enciclopédia Biosfera, v. 10, (18), 2071-2082.

Saidi, S.; Cherif-Silini, H.; Bouket, A.C.; Silini, A.; Eshelli, M.; Luptakova, L.; Alenezi, F.N.; Belbahri, L. 2021. Improvement of Medicago Sativa Crops Productivity by the Co-Inoculation of Sinorhizobium Meliloti–Actinobacteria under Salt Stress. Current Microbiology, v. 78, (4), 1344-1357. https://doi.org/10.1007/s00284-021-02394-z.

Santos, F.D.; Oliveira, M.P.; Meneses, A.C.M.A.; Martins, S.C.S.; Martins, C.M., 2019. Morphology of actinobacteria strains of areas susceptible todesertification. Enciclopédia Biosfera, v. 16, (29), 1911-1924. https://doi.org/10.18677/encibio_2019a148.

Sheteiwy, M.S.; Ali, D.F.I.; Xiong, Y.; Brestic, M.; Skalicky, M.; Hamoud, Y.A.; Ulhassan, Z.; Shaghaleh, H.; AbdElgawad, H.; Farooq, M.; Sharma, A.; El-Sawah, A.M., 2021. Physiological and Biochemical Responses of Soybean Plants Inoculated with Arbuscular Mycorrhizal Fungi and Bradyrhizobium under Drought Stress. BMC Plant Biology, v. 21, 195. https://doi.org/10.1186/s12870-021-02949-z.

Silva, V.B., 2020. Polyphasic Characterization of Nodule Endophytic Microorganims of Vigna Spp. Grown in Soils of Caatinga Biome. Doctoral Thesis, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Paraíba. Retrieved 2022-08-09, from https://sigaa.ufpb.br/sigaa/public/programa/secao_extra.jsf?lc=pt_BR&id=1896&extra=212382365.

Silva, V.M.A.; Martins, C.M.; Cavalcante, F.G.; Ramos, K.A.; Silva, L.L.; Menezes, F.G.R.; Martins, R.P.; Martins, S.C.S., 2019. Cross-Feeding among Soil Bacterial Populations: Selection and Characterization of Potential Bio-Inoculants. Journal of Agricultural Science, v. 11, (5), 23. https://doi.org/10.5539/jas.v11n5p23.

Singh, B., 2018. Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy, v. 8, (4), 48. https://doi.org/10.3390/agronomy8040048.

Singh, R.; Dubey, A.K., 2018. Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches. Frontiers in Microbiology, v. 9. https://doi.org/10.3389/fmicb.2018.01767.

Soe, K.M.; Yamakawa, T., 2013. Evaluation of Effective Myanmar Bradyrhizobium Strains Isolated from Myanmar Soybean and Effects of Coinoculation with Streptomyces Griseoflavus P4 for Nitrogen Fixation. Soil Science and Plant Nutrition, v. 59, (3), 361-370. https://doi.org/10.1080/00380768.2013.794437.

Solans, M.; Pelliza, Y.I.; Tadey, M., 2021. Inoculation with Native Actinobacteria May Improve Desert Plant Growth and Survival with Potential Use for Restoration Practices. Microbial Ecology, v. 83, 380-392. https://doi.org/10.1007/s00248-021-01753-4.

Sousa, J.B., 2020. Interações Positivas Entre Actinobactérias e Rizóbios Oriundos de Áreas Antropizadas do Semiárido. Thesis on Ecology and Natural Resources. Universidade Federal do Ceará, Fortaleza.

Stadie, J.; Gulitz, A.; Ehrmann, M.A.; Vogel, R.F., 2013. Metabolic Activity and Symbiotic Interactions of Lactic Acid Bacteria and Yeasts Isolated from Water Kefir. Food Microbiology, v. 35, (2), 92-98. https://doi.org/10.1016/j.fm.2013.03.009.

Sun, C.; Chen, L.; Zhai, L.; Liu, H.; Wang, K.; Jiao, C.; Shen, Z., 2020. National Assessment of Nitrogen Fertilizers Fate and Related Environmental Impacts of Multiple Pathways in China. Journal of Cleaner Production, v. 277, 123519. https://doi.org/10.1016/j.jclepro.2020.123519.

Wheatley, R.M.; Ford, B.L.; Li, L.; Aroney, S.T.N.; Knights, H.E.; Ledermann, R.; East, A.K.; Ramachandran, V.K.; Poole, P.S., 2020. Lifestyle Adaptations of Rhizobium from Rhizosphere to Symbiosis. Proceedings of the National Academy of Sciences, v. 117, (38), 23823-23834. https://doi.org/10.1073/pnas.2009094117.

Wu, Y.; Cai, P.; Jing, X.; Niu, X.; Ji, D.; Ashry, N.M.; Gao, C.; Huang, Q., 2019. Soil Biofilm Formation Enhances Microbial Community Diversity and Metabolic Activity. Environment International, v. 132, 105116. https://doi.org/10.1016/j.envint.2019.105116.

Zardak, S.G.; Dehnavi, M.M.; Salehi, A.; Gholamhoseini, M., 2018. Effects of Using Arbuscular Mycorrhizal Fungi to Alleviate Drought Stress on the Physiological Traits and Essential Oil Yield of Fennel. Rhizosphere, v. 6, 31-38. https://doi.org/10.1016/j.rhisph.2018.02.001.

Downloads

Published

2023-06-23

How to Cite

Mesquita, A. de F. N., Bandeira, L. L., Cavalcante, F. G., Ribeiro, G. A. L., Martins, S. C. S., & Martins, C. M. (2023). In vitro co-inoculation of rhizobacteria from the semi-arid aiming at their implementation as bio-inoculants . Revista Brasileira De Ciências Ambientais, 58(1), 59–66. https://doi.org/10.5327/Z2176-94781481