PM2.5 removal by urban trees in areas with different forestry conditions in São Paulo using a big-leaf modeling approach

Authors

DOI:

https://doi.org/10.5327/Z2176-94781458

Keywords:

air quality; ecosystem services; fine particulate matter; green infrastructure; urban forestry

Abstract

Air pollution is one of the main environmental problems in megacities, such as the metropolitan area of São Paulo (MASP), in Brazil. Urban forests can alleviate air pollution by providing a surface for the dry deposition of particles and trace gases. To benefit from this environmental service and design future green structures, it is crucial to estimate the removal rate of air pollutants by trees. The removal rates of fine particulate matter (PM2.5) by urban trees were quantitatively assessed for the first time in Brazil. A big-leaf modeling approach was adopted, using the i-Tree Eco software. In situ dendrometric data, hourly PM2.5 concentrations, and meteorological variables were used as inputs to the model. PM2.5 removal fluxes ranged between 0.06 and 0.21 g/m2/year in three study areas with contrasting urban forestry conditions. The neighborhood with the greatest canopy cover and tree diversity had the highest removal rates. The evergreen character of the urban forest in the MASP possibly contributed to the relatively high PM2.5 removal fluxes, as compared to other cities around the world. Removal rates were higher in the austral summer, when high precipitation rates restricted the resuspension of deposited particles back to the atmosphere. When extrapolated to the whole metropolitan area, assuming homogeneous forestry conditions, the estimated PM2.5 removal rates were comparable to the magnitude of vehicular emissions, showing that air pollution removal by trees can be substantial in the MASP. The results demonstrate the contribution of urban trees to the improvement of air quality and can boost the development of public policies on urban afforestation in the MASP.

Downloads

Download data is not yet available.

References

Abhijith, K.V.; Kumar, P., 2019. Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmospheric Environment, v. 201, 132-147. https://doi.org/10.1016/j.atmosenv.2018.12.036.

Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B., 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmospheric Environment, v. 162, 71-86. https://doi.org/10.1016/j.atmosenv.2017.05.014.

Alvares, C.A.; Stape, J.L., Sentelhas, P.C.; Moraes Gonçalves, J.L.; Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.

Andrade, M.F.; Kumar, P.; Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; Miranda, R.M.; Albuquerque, T.; Gonçalves, F.L.T.; Oyama, B.; Zhang, Y., 2017. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmospheric Environment, v. 159, 66-82. https://doi.org/10.1016/j.atmosenv.2017.03.051.

Arantes, B.L.; Mauad, T.; Silva Filho, D.F.D., 2019. Urban forests, air quality and health: a systematic review. International Forestry Review, v. 21, (2), 167-181. https://doi.org/10.1505/146554819826606559.

Barzeghar, V.; Sarbakhsh, P.; Hassanvand, M.S.; Faridi, S.; Gholampour, A., 2020. Long-term trend of ambient air PM10, PM2.5, and O3 and their health effects in Tabriz city, Iran, during 2006–2017, Sustainable Cities and Society, v. 54, 101988. https://doi.org/10.1016/j.scs.2019.101988

Cabaraban, M.T.I.; Kroll, C.N.; Hirabayashi, S.; Nowak, D.J. 2013. Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system. Environmental Pollution, v. 176, 123-133. https://doi.org/10.1016/j.envpol.2013.01.006.

Caiafa, A.N.; Martins, F.R., 2010. Forms of rarity of tree species in the southern Brazilian Atlantic rainforest. Biodiversity and Conservation, v. 19, (9), 2597-2618. https://doi.org/10.1007/s10531-010-9861-6.

Carvalho, V.S.B.; Freitas, E.D.; Martins, L.D.; Martins, J.A.; Mazzoli, C.R.; Andrade, M.F., 2015. Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environmental Science & Policy, v. 47, 68-79. https://doi.org/10.1016/j.envsci.2014.11.001.

Companhia Ambiental do Estado de São Paulo (CETESB), 2008. Material Particulado inalável fino (MP2,5) e grosso (MP2,5 – 10) na atmosfera da Região Metropolitana de São Paulo (2000 – 2006). (Accessed Nov 15, 2021) at:. https://cetesb.sp.gov.br/qualidade-ar/wp-content/uploads/sites/28/2013/12/Relatorio_MP2_5.zip.

Companhia Ambiental do Estado de São Paulo (CETESB), 2020. Qualidade do ar no Estado de São Paulo em 2019. (Accessed Dec 5, 2020) at:. https://cetesb.sp.gov.br/ar/wp-content/uploads/sites/28/2020/07/Relatório-de-Qualidade-do-Ar-2019.pdf.

Companhia Ambiental do Estado de São Paulo (CETESB), 2022. Qualar - Sistema de Informações da Qualidade do Ar. (Accessed Dec 1 2020) at:. https://cetesb.sp.gov.br/ar/qualar/.

Concha, H. de la; Cano, L.R.; Burgos, A.G., 2017. Inventario del arbolado urbano de la Ciudad de Mérida, Mérida, México. (Accessed Jan 31 2022) at:. http://www.merida.gob.mx/municipio/sitiosphp/sustentable/contenidos/doc/inventario_arbolado_merida.pdf.

Doick, K.J.; Handley, P.; Ashwood, F.; Vaz Monteiro, M.; Frediani, K.; Rogers, K., 2017. Valuing Edinburgh’s Urban Trees. An update to the 2011 i-Tree Eco survey – a report of Edinburgh City Council and Forestry Commission Scotland, Edinburgh, UK. (Accessed Mar 13 2021) at:. https://www.forestresearch.gov.uk/documents/7876/FR_Doick_Edinburgh_iTree_Full_Report_2017_OJfWakl.pdf.

Donateo, A.; Rinaldi, M.; Paglione, M.; Villani, M.G.; Russo, F.; Carbone, C.; Zanca, N.; Pappaccogli, G.; Grasso, F.M.; Busetto, M.; Sänger, P.; Ciancarella, L.; Decesari, S., 2021. An evaluation of the performance of a green panel in improving air quality, the case study in a street canyon in Modena, Italy. Atmospheric Environment, v. 247, 118189. https://doi.org/10.1016/j.atmosenv.2021.118189.

Engemann, K.; Enquist, B.J.; Sandel, B.; Boyle, B.; Jørgensen, P.M.; Morueta‐Holme, N.; Peet, R.K.; Violle, C.; Svenning, J., 2015. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot. Ecology and Evolution, v. 5, (3), 807-820. https://doi.org/10.1002/ece3.1405.

Escobedo, F.J.; Nowak, D.J., 2009. Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning, v. 90, (3-4), 102-110. https://doi.org/10.1016/j.landurbplan.2008.10.021.

Gaglio, M.; Pace, R.; Muresan, A.N.; Grote, R.; Castaldelli, G.; Calfapietra, C.; Fano, E.A., 2022. Species-specific efficiency in PM2.5 removal by urban trees: From leaf measurements to improved modeling estimates. Science of The Total Environment, v. 844, 157131. https://doi.org/10.1016/j.scitotenv.2022.157131.

Gómez Peláez, L.M.; Santos, J.M.,; Almeida Albuquerque, T.T.; Reis, N.C.; Andreão, W.L.; Fátima Andrade, M., 2020. Air quality status and trends over large cities in South America. Environmental Science and Policy, v. 114, 422-435. https://doi.org/10.1016/j.envsci.2020.09.009.

Han, D.; Shen, H.; Duan, W.; Chen, L., 2020. A review on particulate matter removal capacity by urban forests at different scales. Urban Forestry and Urban Greening, v. 48, 126565. https://doi.org/10.1016/j.ufug.2019.126565.

Hirabayashi, S.; Kroll, C.N.; Nowak, D.J., 2012. Development of a distributed air pollutant dry deposition modeling framework. Environmental Pollution, v. 171, 9-17. https://doi.org/10.1016/j.envpol.2012.07.002.

Hirabayashi, S.; Kroll, C.N.; Nowak, D.J.; Endreny, T.A., 2015. i-Tree Eco Dry Deposition Model Descriptions. 34. (Accessed Jun 5, 2020) at:. http://www.itreetools.org/eco/resources/iTree_Eco_Dry_Deposition_Model_Descriptions.pdf.

Hirabayashi, S.; Nowak, D.J., 2016. Comprehensive national database of tree effects on air quality and human health in the United States. Environmental Pollution, v. 215, 48-57. https://doi.org/10.1016/j.envpol.2016.04.068.

Informe Nacional de Calidad del Aire (INECC), 2019. México, Ciudad de México, 2021. (Accessed Jul 31, 2021) at:. http://189.240.101.244:8080/xmlui/handle/publicaciones/349.

Janhäll, S., 2015. Review on urban vegetation and particle air pollution - Deposition and dispersion. Atmospheric Environment, v. 105, 130-137. https://doi.org/10.1016/j.atmosenv.2015.01.052.

Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C., 2017. Green infrastructure practices for improvement of urban air quality. Urban Forestry and Urban Greening, v. 21, 34-47. https://doi.org/10.1016/j.ufug.2016.11.007.

Kabashima, Y.; Andrade, M.L.F.; Gandara, F.B.; Tomas, F.L.; Polizel, J.L.; Velasco, G.D.N.; Silva, L.F.; Dozzo, A.D.P.; Moura, R.G.; Ferreira da Silva Filho, D., 2019. Histórico da composição da vegetação arbórea do parque do Ibirapuera e sua contribuição para a conservação da biodiversidade. Revista da Sociedade Brasileira de Arborização Urbana, v. 6, (4), 125-144. https://doi.org/10.5380/revsbau.v6i4.66492.

Kumar, P.; Druckman, A.; Gallagher, J.; Gatersleben, B.; Allison, S.; Eisenman, T.S.; Hoang, U.; Hama, S.; Tiwari, A.; Sharma, A.; Abhijith, K.V.; Adlakha, D.; McNabola, A.; Astell-Burt, T.; Feng, X.; Skeldon, A.C.; Lusignan, S.; Morawska, L., 2019. The nexus between air pollution, green infrastructure and human health. Environment International, 133, (part A), 105181. https://doi.org/10.1016/j.envint.2019.105181.

Li, D.; Ma, J.; Cheng, T.; van Genderen, J.L.; Shao, Z., 2019. Challenges and opportunities for the development of MEGACITIES. International Journal of Digital Earth, v. 12, (12), 1382-1395. https://doi.org/10.1080/17538947.2018.1512662.

Lin, J.; Kroll, C.N.; Nowak, D.J.; Greenfield, E.J., 2019. A review of urban forest modeling: Implications for management and future research. Urban Forestry and Urban Greening, v. 43, 126366. https://doi.org/10.1016/j.ufug.2019.126366.

Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; Valdes Ortega, N.; Osorio Garcia, S.; Pascal, M.; Stafoggia, M.; Scortichini, M.; Hashizume, M.; Honda, Y.; Hurtado-Díaz, M.; Cruz, J., … Kan, H., 2019. Ambient particulate air pollution and daily mortality in 652 cities. New England Journal of Medicine, v. 381, (8), 705-715. https://doi.org/10.1056/NEJMoa1817364.

Livesley, S.J.; McPherson, E.G.; Calfapietra, C., 2016. The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, v. 45, (1), 119-124. https://doi.org/10.2134/jeq2015.11.0567.

Locosselli, G.M.; Camargo, E.P.; Moreira, T.C.L.; Todesco, E.; Andrade, M.F.; André, C.D.S.; André, P.A.; Singer, J.M.; Ferreira, L.S.; Saldiva, P.H.N.; Buckeridge, M.S., 2019. The role of air pollution and climate on the growth of urban trees. Science of the Total Environment, v. 666, 652-661. https://doi.org/10.1016/j.scitotenv.2019.02.291.

Locosselli, G.M.; Chacón-Madrid, K.; Zezzi Arruda, M.A.; Pereira de Camargo, E.; Lopes Moreira, T.C.; Saldiva de André, C.D.; Afonso de André, P.; Singer, J.M.; Nascimento Saldiva, P.H.; Buckeridge, M.S., 2018. Tree rings reveal the reduction of Cd, Cu, Ni and Pb pollution in the central region of São Paulo, Brazil. Environmental Pollution, v. 242, (part A), 320-328. https://doi.org/10.1016/j.envpol.2018.06.098.

Moreira, T.C.L.; Polizel, J.L.; Santos, I.S.; Silva Filho, D.F.; Bensenor, I.; Lotufo, P.A.; Mauad, T., 2020. Green spaces, land cover, street trees and hypertension in the megacity of São Paulo. International Journal of Environmental Research and Public Health, v. 17, (3), 725. https://doi.org/10.3390/ijerph17030725.

Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J., 2018. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban Forestry and Urban Greening, v. 29, 40-48. https://doi.org/10.1016/j.ufug.2017.10.019.

Oliveira, M.C.Q.D.; Drumond, A.; Rizzo, L.V., 2022. Air pollution persistent exceedance events in the Brazilian metropolis of Sao Paulo and associated surface weather patterns. International Journal of Environmental Science and Technology, v. 19, 9495-9506. https://doi.org/10.1007/s13762-021-03778-1.

Pace, R.; Guidolotti, G.; Baldacchini, C.; Pallozzi, E.; Grote, R.; Nowak, D.J.; Calfapietra, C., 2021. Comparing i-Tree Eco Estimates of Particulate Matter Deposition with Leaf and Canopy Measurements in an Urban Mediterranean Holm Oak Forest. Environmental Science and Technology, v. 55, (10), 6613-6622. https://doi.org/10.1021/acs.est.0c07679.

Parnreiter, C., 2019. Global cities and the geographical transfer of value. Urban Studies, v. 56, (1), 81-96. https://doi.org/10.1177/0042098017722739.

Parsa, V.A.; Salehi, E.; Yavari, A.R.; van Bodegom, P.M., 2019. Analyzing temporal changes in urban forest structure and the effect on air quality improvement. Sustainable Cities and Society, v. 48, 101548. https://doi.org/10.1016/j.scs.2019.101548.

Piñero Sánchez, M.; Oliveira, A.P.; Varona, R.P.; Tito, J.V.; Codato, G.; Ribeiro, F.N.D.; Marques Filho, E.P.; Silveira, L.C., 2020. Rawinsonde-Based Analysis of the Urban Boundary Layer in the Metropolitan Region of São Paulo, Brazil. Earth and Space Science, v. 7, (2), e2019EA000781. https://doi.org/10.1029/2019EA000781.

Pope, C.A.; Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, v. 56, (6), 709-742. https://doi.org/10.1080/10473289.2006.10464485

Ramon, M.; Ribeiro, A.P.; Theophilo, C.Y.S.; Moreira, E.G.; Camargo, P.B.; Bragança Pereira, C.A.; Saraiva, E.F.; Reis Tavares, A.; Dias, A.G.; Nowak, D.; Ferreira, M.L., 2022. Assessment of four urban forest as environmental indicator of air quality: a study in a Brazilian megacity. Urban Ecosystems. https://doi.org/10.1007/s11252-022-01296-7.

Raupp, M.J.; Cumming, A.B.; Raupp, E.C., 2006. Street tree diversity in eastern North America and its potential for tree loss to exotic borers. Arboriculture & Urban Forestry, v. 32, (6), 297-304. https://doi.org/10.48044/jauf.2006.038.

Salvo, A.; Brito, J.; Artaxo, P.; Geiger, F.M., 2017. Reduced ultrafine particle levels in São Paulo’s atmosphere during shifts from gasoline to ethanol use. Nature Communications, v. 8, (1), 77. https://doi.org/10.1038/s41467-017-00041-5.

Seinfeld, J.H.; Pandis, S.N., 2006. Atmospheric chemistry and physics: from air pollution to climate change (2nd ed.). Wiley.

Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D., 2016. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban Forestry and Urban Greening, v. 17, 192-201. https://doi.org/10.1016/j.ufug.2016.04.010.

Silva, J.L.S.; Oliveira, M.T.P.; Oliveira, W.; Borges, L.A.; Cruz-Neto, O.; Lopes, A.V., 2020. High richness of exotic trees in tropical urban green spaces: Reproductive systems, fruiting and associated risks to native species. Urban Forestry & Urban Greening, v. 50, 126659. https://doi.org/10.1016/j.ufug.2020.126659.

Silva, M.D.; Oliveira, M.C.Q.D.; Drumond, A.; Rizz, L.V. (2021). Air pollutants associated with surface meteorological conditions in São Paulo’s ABC region. Brazilian Journal of Environmental Sciences, v. 56, (3), 459-469. https://doi.org/10.5327/Z21769478917.

Sugahara, S.; Rocha, R.P.; Ynoue, R.Y.; Silveira, R.B., 2012. Homogeneity assessment of a station climate series (1933-2005) in the Metropolitan Area of São Paulo: Instruments change and urbanization effects. Theoretical and Applied Climatology, v. 107, (3-4), 361-374. https://doi.org/10.1007/s00704-011-0485-x.

Szkop, Z., 2020. Evaluating the sensitivity of the i-Tree Eco pollution model to different pollution data inputs: A case study from Warsaw, Poland. Urban Forestry and Urban Greening, v. 55, 126859. https://doi.org/10.1016/j.ufug.2020.126859.

UK-AIR, 2022. PM2.5 annual mean at Edinburgh St Leonards air quality monitoring station in 2016. Air Inf. Resource. (Accessed February 3, 2022) at:. https://uk-air.defra.gov.uk/data/data_selector_service#mid.

Vaudrey, B.; Mielcarek, M.; Sauleau, E.; Meyer, N.; Marchandot, B.; Moitry, M.; Robellet, P.; Reeb, T.; Jesel, L.; Ohlmann, P.; Bourdrel, T.; Morel, O., 2020. Short-Term Effects of Air Pollution on Coronary Events in Strasbourg, France—Importance of Seasonal Variations. Medical Sciences, v. 8, (3), 31. https://doi.org/10.3390/medsci8030031.

Wang, H.; Maher, B.A.; Ahmed, I.A.M.; Davison, B., 2019. Efficient removal of ultrafine particles from diesel exhaust by selected tree species: implications for roadside planting for improving the quality of urban air. Environmental Science and Technology, v. 53, (12), 6906-6916. https://doi.org/10.1021/acs.est.8b06629.

Wu, J.; Wang, Y.; Qiu, S.; Peng, J., 2019. Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Science of the Total Environment, v. 688, 673-683. https://doi.org/10.1016/j.scitotenv.2019.05.437.

Yang, J.; McBride, J.; Zhou, J.; Sun, Z., 2005. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry and Urban Greening, v. 3, (2), 65-78. https://doi.org/10.1016/j.ufug.2004.09.001.

Zenni, R.D.; Ziller, S.R., 2011. An overview of invasive plants in Brazil. Revista Brasileira de Botânica, v. 34, (3), 431-446. https://doi.org/10.1590/S0100-84042011000300016.

Downloads

Published

2022-12-15

How to Cite

Brito, C. N., & Rizzo, L. V. (2022). PM2.5 removal by urban trees in areas with different forestry conditions in São Paulo using a big-leaf modeling approach. Revista Brasileira De Ciências Ambientais, 57(4), 606–617. https://doi.org/10.5327/Z2176-94781458