Ecology and coexistence of Aedes aegypti (Linnaeus 1762) and Aedes (Ste.) albopictus (Skuse 1894) in two state parks in Cuiabá, MT, Brazil
DOI:
https://doi.org/10.5327/Z2176-94781451Keywords:
abundance; conservation units; Culicidae vectors; mosquitoes.Abstract
Scientific investigation of disease vectors is indispensable for knowledge of its Ecology, as they affect the health of human population. In this work, we present the results of the distribution and abundance of Aedes aegypti and Ae. albopictus in Massairo Okamura and Mãe Bonifácia state parks, Cuiabá-Mato Grosso, Brazil, to understand how changes in the rainy season interfere with their proliferation in natural wild areas located in urban regions. The focus was to investigate the coexistence of these species in the capture sites. The collections were carried out in eight campaigns within a period of 11 months of the year 2019, through ovitraps, with a total of 10 traps for each park. The results of the variables abundance (n) and relative humidity (%) were analyzed by the Statistic 7.0 program using factorial ANOVA. The 7117 quantified larvae produced 1462 adults for the two parks, with significant variability in mean abundance values between months and between sampling points. The record of the co-occurrence of Ae. aegypti and Ae. albopictus resulted in their coexistence and use of similar breeding sites under advantageous conditions for their colonization. The results presented showed that the parks have vulnerabilities in relation to the proliferation of vectors, and the environments must go through constant epidemiological surveillance. Faced with a serious situation in relation to arboviruses, it is essential to adopt strategies with greater investments in adequate methods, which provide sustainability to the actions established by surveillance networks.
Downloads
References
Akhatar, R.; Gupta, P.T.; Srivastava, A.K., 2016. Urbanization, urban heat island effects and Dengue outbreak in Delhi. In: Akhatar, R. (ed.). Climate change and human health scenario in South and Southeast Asia. Asia: Springer, pp. 99-111. https://doi.org/10.1007/978-3-319-23684-1_7.
Akiner, M.M.; Demirci, B.; Babuadze, G.; Robert, V.; Schaffner, F., 2016. Spread of invasive mosquitoes Aedes aegypti and Aedes albopictus in the black sea region increases risk of Chikungunya, Dengue, and Zika outbreaks in Europe. PLOS Neglected Tropical Disease, v. 10, (5), e0004764. https://doi.org/10.1371/journal.pntd.0004664.
Almeida, C.E.; Lima, M.M.; Costa, J., 2014. Ecologia dos vetores. In: Galvão, C., (ed.). Vetores da doença de chagas no Brasil. Curitiba: Sociedade Brasileira de Zoologia, pp. 210- 235. https://doi.org/10.7476/9788598203096.
Almeida, L.S.; Cota, A.L.S.; Rodrigues, D.F., 2020. Saneamento, Arboviroses e Determinantes Ambientais: impactos na saúde urbana. Ciência & Saúde Coletiva, v. 25, (10), 3857-3868. https://doi.org/10.1590/1413-812320202510.30712018.
Alonso, W.J.; McCormick, J.J., 2018. Urban Ecology and the Effectiveness of Aedes Control. In: Falcón-Lezama, J.A.; Betancourt-Cravioto, M.; Tapia-Conyer, R. (eds.). Dengue fever a resilient threat in the face of innovation. InTech. https://doi.org/10.5772/intechopen.78688.
Alvares, A.C.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G., 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
Alves, R.D.M.; Camolezi, G.; Bernardes, A.; Mariotto, S., 2020. Marcadores moleculares para detecção de espécies da microbiota do solo do cerrado brasileiro. Brazilian Journal of Development, v. 6, (12), 100926-100936. https://doi.org/10.34117/bjdv6n12-546.
Arduíno, M.B.; Ávila, G.O., 2015. Aspectos físicos-químicos da água de criadouros de Aedes aegypti em ambiente urbano e as implicações para o controle da Dengue. Revista de Patologia Tropical, v. 44, (1), 89-100. https://doi.org/10.5216/rpt.v44i1.34801.
Barros, M.P.; Musis, C.R.; Hornick, C., 2010. Parque da Cidade Mãe Bonifácia, Cuiabá-MT: Topofilia e amenização climática em um fragmento de cerrado urbano. REVSBAU, v. 5, (2), 1-18. https://doi.org/10.5380/revsbau.v5i2.66264.
Butakka, C.M.M.; Siqueira, L.S.N.; Rodrigues, F.A.C.; Miyazaki, R.D.; Mariotto, S.; Cerqueira, L.L.N.; Bittencourt, W.S., 2019. Investigation of isoenzyme α-esterase in Aedes aegypti from two municipalities of Mato Grosso. Mundo da Saúde, v. 43, (4), 976-995. https://doi.org/10.15343/0104-7809.20194304976995.
Campbell, L.P.; Luther, C.; Moo-Llanes, D.; Ramsey, J.M.; Danis-Lozano, R.; Peterson, A.T., 2015. Climate change influences on global distributions of Dengue and Chikungunya virus vectors. Philosophical Transactions of the Royal Society B, v. 11, 20140135. https://doi.org/10.1098/rstb.2014.0135.
Cesarino, M.B.; Dibo, M.R.; Zöllner Ianni, A.M.; Vicentini, M.E.; Ferraz, A.A.; Chiaravalloti-Neto, F., 2014. The difficult interface between vector control and primary care: insertion of dengue fever vector control agents into health teams at the primary health centers in São José do Rio Preto, São Paulo, Brazil. Saúde e Sociedade, v. 23, (3), 1018-1032. https://doi.org/10.1590/S0104-12902014000300023.
Climatempo, 2022. Climatologia em Cuiabá (Accessed Mês xx, 20xx) at:. https://www.climatempo.com.br/climatologia/218/cuiaba-mt.
Companhia de Pesquisa de Recursos Minerais (CPRM), 2006. Sistema de informação geoambiental de Cuiabá, Várzea Grande e entorno – Projeto SIG Cuiabá. CPRM.
Cozzer, G.D.; Rezende, R.S.; Lutinski, J.A.; Roman Júnior, W.A.; Busato, M.A.; Simões, D.A., 2021. How long is long enough? Decreasing effects in Aedes aegypti larval mortality by plant extracts over time. Brazilian Journal of Environmental Sciences, v. 56, (2), 338-345. https://doi.org/10.5327/Z21769478806.
Custódio, J.M.O.; Nogueira, L.M.S.; Souza, D.A.; Fernandes, M.F.; Oshiro, E.T.; Oliveira, E.F.; Piranda, E.M.; Oliveira, A.G., 2019. Abiotic factors and population dynamic of Aedes aegypti and Aedes albopictus in an endemic area of Dengue Brazil. Revista do Instituto de Medicina Tropical de São Paulo, v. 61, e18. https://doi.org/10.1590/S1678-9946201961018.
Dalpadado, R.; Amarasinghe, D.; Gunathilaka, N.; Ariyarathna, N., 2022. Bionomic aspects of dengue vectors Aedes aegypti and Aedes albopictus at domestic settings in urban, suburban and rural areas in Gampaha District, Western Province of Sri Lanka. Parasites & Vectors, v. 15, 148. https://doi.org/10.1186/s13071-022-05261-3.
David, M.R.; Dantas, E.S.; Maciel-de-Freitas, R.; Codeço, C.T.; Prast, A.E.; Lourenço-de-Oliveira, R., 2021. Influence of Larval Habitat Environmental Characteristics on Culicidae Immature Abundance and Body Size of Adult Aedes aegypti. Frontiers in Ecology and Evolution, v. 9, 626757. https://doi.org/10.3389/fevo.2021.626757.
Devi, S.; Kaura, T.; Kaur, J.; Lovleen, L.; Takkar, J.; Sharma, S.K.; Grover, G.S., 2020. Prevalence of dengue vectors, larval breeding habitats, Stegomyia indices and their correlation with dengue cases in urban and rural areas of Punjab, India. Journal of Vector Borne Diseases, v. 57, (2), 176-181. https://doi.org/10.4103/0972-9062.313966.
Fay, R.W.; Perry, S., 1965. Laboratory studies of ovipositional preferences of Aedes aegypti. Mosquito News, (25), 276-281.
Ferreira Filho, J.M.; Carvalho, R.G.; Camacho, R.G.V., 2017. Impactos ambientais em unidades de conservação urbanas: o caso da Área de Relevante Interesse Ecológico da Ilha da Coroa em Mossoró no Rio Grande do Norte, Brasil. Revista Brasileira de Geografia Física, v. 10, (1), 304-316. https://doi.org/10.5935/1984-2295.20170018.
Forattini, O.P., 2002. Culicidologia médica: Identificação, Biologia e Epidemiologia. São Paulo: EDUSP, v. 2, 864 pp.
Gabriel, A.F.B.; Abe, K.C.; Guimarães, M.P.; Miraglia, S.G.E.K., 2018. Avaliação de impacto à saúde da incidência de dengue associada à pluviosidade no município de Ribeirão Preto, São Paulo. Caderno de Saúde Coletiva, v. 26, (4), 446-452. https://doi.org/10.1590/1414-462X201800040119.
Guarido, M.M.; Riddin, M.A.; Johnson, T.; Braack, L.E.O.; Schrama, M.; Gorsich, E.E.; Brooke, B.D.; Almeida, A.P.G.; Venter, M., 2021. Aedes species (Diptera: Culicidae) ecological and host feeding patterns in the north‑eastern parts of South Africa, 2014–2018. Parasites & Vectors, 14, 339. https://doi.org/10.1186/s13071-021-04845-9.
Guarim, V.L.M.S.; Vilanova, S.R.F., 2008. Parques Urbanos de Cuiabá, Mato Grosso-Mãe Bonifácia e Massairo Okamura. Cuiabá: Entrelinhas, 112 pp.
Hendy, A.; Hernandez-Acosta, E.; Chaves, B.A.; Ferreira Fé, N.; Valério, D.; Mendonça, C.; Lacerda, M.V.G.; Buenemann, M.; Vasilakis, N.; Hanley, K.A., 2020. Into the woods: Changes in mosquito community composition and presence of key vectors at increasing distances from the urban edge in urban forest parks in Manaus, Brazil. Acta Tropica, v. 206, 105441. https://doi.org/10.1016/j.actatropica.2020.105441.
Huynh, T.T.T.; Minakawa, N., 2022. A comparative study of dengue virus vectors in major parks and adjacent residential areas in Ho Chi Minh City, Vietnam. PloS Neglected Tropical Diseases, v. 16, (1), e0010119. https://doi.org/10.1371/journal.pntd.0010119.
Hwang, M.J.; Kim, J.H.; Kim, H.C.; Kim, M.S.; Klein, T.A.; Choi, J.; Sim, K.; Chung, Y.; Joshi, Y.P.; Cheong, H.K., 2020. Temporal Trend of Aedes albopictus in Local Urban Parks of the Republic of Korea. Journal of Medical Entomology, v. 57, (4), 1082-1089. https://doi.org/10.1093/jme/tjaa039.
Instituto Brasileiro de Geografia e Estatística (IBGE), 2002. Diretoria de Geociências. Mapa de Clima do Brasil. Escala 1:5.000.000. IBGE (Accessed June 21, 2022) at:. https://www.ibge.gov.br/.
Instituto Nacional de Meteorologia (INMET), 2022. Portal. INMET (Accessed June 28, 2022) at:. http://www.inmet.gov.br/portal.
Kirik, H.; Burtin, V.; Tummeleht, L.; Kurina, O., 2021. Friends in All the Green Spaces: Weather Dependent Changes in Urban Mosquito (Diptera: Culicidae) Abundance and Diversity. Insects, v. 12, (4), 352. https://doi.org/10.3390/insects12040352.
Lima, E.O.; Caldart Rodrigues, F.A.; Butakka, C.M.M.; Miyiazaki, R.D.; Cerqueira, L.L.M.; Mariotto, S., 2021. Avaliação do polimorfismo na enzima esterase em populações naturais de Aedes aegypti em Chapada de Guimarães, Mato Grosso. Brazilian Journal of Development, v. 7, (2), 18539-18552. https://doi.org/10.34117/bjdv7n2-477.
Lima, F.S.F.; Barrozo, L.V.; Mataveli, G.A.V., 2018. Temperatura da superfície e precipitação que influenciam na incidência do Aedes aegypti em São Paulo. Revista do Departamento de Geografia, v. esp., 174-183. https://doi.org/10.11606/rdg.v0ispe.145697.
Lira-Vieira, A.R.; Gurgel-Gonçalves, R.; Moreira, I.M.; Yoshizawa, M.A.; Coutinho, M.L.; Prado, P.S., 2013. Ecological aspects of mosquitoes (Diptera: Culicidae) in the irus y forest of Brasília National Park. Brazil, with emphasis on potential vectors of yellow fever. Revista da Sociedade Brasileira de Medicina Tropical, v. 46, (5), 566-574. https://doi.org/10.1590/0037-8682-0136-2013.
Marcondes, C.B.; Ximenes, M.F.F., 2015. Zika irus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicina Tropical, v. 49, (1), 4-10. https://doi.org/10.1590/0037-8682-0220-2015.
Miyazaki, R.D.; Ribeiro, A.L.M.; Pignatti, M.G.; Campelo Júnior, J.H.; Pignati, M., 2009. Monitoramento do mosquito Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae), por meio de ovitrampas no Campus da Universidade Federal de Mato Grosso, Cuiabá, Estado de Mato Grosso. Revista da Sociedade Brasileira de Medicina Tropical, v. 42, (4), 392-397. https://doi.org/10.1590/S0037-86822009000400007.
Nascimento, S.T.M.F.; Ribeiro, E.S.; Souza, R.A.T.M., 2013. Valoração econômica de uma unidade de conservação urbana, Cuiabá, Mato Grosso. Interações, v. 14, (1), 79-88. https://doi.org/10.1590/S1518-70122013000100008.
Novais, J.W.Z.; Marques, A.C.M.; Siqueira, A.Y.; Reis, N.M.S.; D’Orazio Joaquim, T.; Pereira, S.P., 2018. Índice de Temperatura e Umidade (ITU) Visando o Conforto Térmico para o Parque Mãe Bonifácia, Cuiabá-MT. Ensaios e Ciência, v. 22, (2), 69-75. https://doi.org/10.17921/1415-6938.2018v22n2p69-75.
Parker, C.; Ramirez, D.; Connelly, R., 2019. State-wide survey of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Florida. Journal of Vector Ecology, v. 44, (2), 210-215. https://doi.org/10.1111/jvec.12351
Pinheiro, M.F.S.; Mendes, A.Z., 2013. Análise dos Parques Estaduais Massairo Okamura e Mãe Bonifácia com Base no SNUC. IV Congresso Brasileiro de Gestão Ambiental. Salvador/BA: Instituto Brasileiro de Estudos Ambientais e de Saneamento.
Powell, J.R.; Tabachnick, W.J., 2013. History of domestication and spread of Aedes aegypti: a review. Memórias do Instituto Oswaldo Cruz, v. 108, (Suppl. 1), 11-17. https://doi.org/10.1590/0074-0276130395.
Rajarethinam, J.; Ong, J.; Neo, Z.W.; Ng, L.C.; Aik, J., 2020. Distribution and seasonal fluctuations of Ae. aegypti and Ae. albopictus larval and pupae in residential areas in an urban landscape. PLoS Neglected Tropical Diseases, v. 14, (4), e0008209. https://doi.org/10.1371/journal.pntd.0008209.
Rodrigues, F.A.C.; Butakka, C.M.M.; Siqueira, L.S.N.; Cerqueira, L.L.M.; Mariotto, S.; Miyazaki, R.D., 2021. Isoenzymes of Aedes aegypti found in Baixada Cuiabana, Mato Grosso, Brazil. Interfaces Científicas, v. 8, (3), 470-485. https://doi.org/10.17564/2316-3798.2021v8n3p470-485.
Secretaria de Estado do Meio Ambiente, 2012. Coordenadoria de Unidades de Conservação. IGPlan. Plano de Manejo do Parque Estadual Massairo Okamura. Secretaria de Estado do Meio Ambiente, 236 pp.
Secretaria de Estado do Meio Ambiente, 2013. Plano de Manejo do Parque Estadual Mãe Bonifácia., 2013. Secretaria de Estado do Meio Ambiente, 308 pp.
Secretaria do Estado de Mato Grosso (SEMA), 2012. Análise da Região da UC – IGPlan. Plano de Manejo do Parque Estadual Massairo Okamura. Curitiba: SEMA, 236 pp.
Silva, A.L.; Longo, R.M.; Bressane, A.; Carvalho, M.F.H., 2019. Classificação de fragmentos florestais urbanos com base em métricas da paisagem. Ciência Florestal, v. 29, (3), 1254-1269. https://doi.org/10.5902/1980509830201.
Silva, A.M., 2021. Mosquitos sinantrópicos do Estado do Paraná, sul do Brasil. Acta Biologica Paranaense, v. 50, (1-4), 55-77. https://doi.org/10.5380/abp.v50i1-4.83339.
Silva, S.O.F.; Mello, C.F.; Campos, J.A.R.; Leite, P.J.; Sabino, R.; Alencar, J., 2022. Report of Mosquito Vectors of Arboviruses from a Federal Conservation Unit in the Atlantic Forest, Rio de Janeiro State, Brazil. Life, v. 12, (10), 1597. https://doi.org/10.3390/life12101597.
Souza, S.J.P.; Camargo Guaraldo, A.; Honório, N.A.; Câmara, D.C.P.; Sukow, N.M.; Machado, S.T.; Duarte dos Santos, C.N.; Costa-Ribeiro, M.C.V., 2022. Spatial and Temporal Distribution of Aedes aegypti and Aedes albopictus Oviposition on the Coast of Paraná, Brazil, a Recent Area of Dengue Virus Transmission. Tropical Medicine and Infectious Disease, v. 7, (9), 246. https://doi.org/10.3390/tropicalmed7090246.
Talbot, B.; Sander, B.; Cevallos, V.; González, C.; Benítez, D.; Carissimo, C.; Ferro, M.C.C.; Gauto, N.; Litwiñiuk, S.; López, K.; Ortiz, M.I.; Ponce, P.; Villota,S.D.; Zelaya, F.; Espinel, M.; Wu, J.; Miretti M.; Kulkarni, M.A., 2021. Determinants of Aedes mosquito density as an indicator of arbovirus transmission risk in three sites affected by co‑circulation of globally spreading arboviruses in Colombia, Ecuador and Argentina. Parasites Vectors, v. 14, 482. https://doi.org/10.1186/s13071-021-04984-z.
Townsend, C.R.; Begon, M.; Harper, J.L., 2010. Fundamentos de Ecologia. 3ª ed. Porto Alegre: Artmed, 576 pp.
Wilk-da-Silva, R.; Leal Diniz, M.M.C.S.; Marrelli, M.T., 2018. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasites & Vectors, v. 11, 561. https://doi.org/10.1186/s13071-018-3154-4.
Wilke, A.B.B.; Vasquez, C.; Carvajal, A.; Medina, J.; Chase, C.; Cardenas, G.; Mutebi, J.P.; Petrie, W.D.; Beier, J.C., 2020. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Scientific Reports, (10), 12925. https://doi.org/10.1038/s41598-020-69759-5.
Zara, A.L.S.A.; Santos, S.M.; Fernandes-Oliveira, E.S.; Carvalho, R.G.; Coelho, G.E., 2016. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e Serviços de Saúde, v. 25, (2), 391-404. https://doi.org/10.5123/S1679-49742016000200017.
Zequi, J.A.C.; Lopes, J.; Medri, I.M., 2005. Imaturos de Culicidae encontrados em recipientes instalados em mata residual no município de Londrina, Paraná, Brasil. Revista Brasileira de Zoologia, v. 22, (3), 656-661. https://doi.org/10.1590/S0101-81752005000300021.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.