Passive air sampler-derived concentrations and carcinogenic potential of PAHs in oil/gas production city (Macaé, Brazil)
DOI:
https://doi.org/10.5327/Z2176-94781431Keywords:
polycyclic aromatic hydrocarbons; passive sampler; air pollution; benzo[a]pyrene-equivalent; urban coast areas.Abstract
Urban centers cause atmospheric pollution and suffer the most from their emissions. Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances (PTS) that can be air transported at urban sites and impact human health, causing skin allergies, respiratory diseases, and cancer. Macaé is a southeastern Brazilian coastal city that had an intense process of urbanization and population growth due to the installation of oil companies in the 1970s. The study aimed to evaluate Macaé’s air quality regarding atmospheric PAH occurrence, measured using polyurethane foam passive air samplers (PUF-PAS). PUF disks were deployed along environmental gradients during the 2018–2019 spring/summer in Macaé city and its surroundings. In total, 22 individual PAHs were analyzed by gas chromatography coupled with mass spectrometry. Total PAH air concentrations ranged from 0.3 to 3.3 ng.m-3, pointing out three- to four-membered ring compounds as the most abundant (76%). Among them, phenanthrene, anthracene, and fluoranthene had the highest air concentrations, especially at sampling sites where fossil fuel combustion seemed more prominent. Compared to other cities worldwide, the lower PAH air levels reported in this study may be linked to the influence of marine air masses. As the most carcinogenic PAH compound is benzo[a]pyrene, the results are also given in benzo[a]pyrene-equivalent (BaPeq). BaPeq ranged from 0.02 to 0.10 ng.m-3. This study indicated an environmental trend along urban-industry-background spatial transects. Even though a prominent marine air mass might contribute to efficient air pollution dispersion, in urban/industrial areas, human exposure to carcinogenic chemicals is higher, probably due to local PAH sources inside the urban perimeter of Macaé.
Downloads
References
Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). 2019. Royalties. (Accessed Oct 28, 2021). Available at:. http://www.anp.gov.br.
Alani, R.; Zhao, S.; Liu, X.; Akinrinade, O.; Agunbiade, F.; Ayejuyo, O.; Zhang, G., 2021. Concentrations, profiles and exposure risks of polycyclic aromatic hydrocarbons (PAHs) in passive air samples from Lagos, Nigeria. Atmospheric Pollution Research, v. 12, (9), 101162. https://doi.org/10.1016/j.apr.2021.101162.
Álvarez, A.; Pozo, K.; Paéz, M.I.; Estellano, V.H.; Llanos, Y.; Focardi, S., 2016. Semivolatile Organic Compounds (SVOCs) in the atmosphere of Santiago de Cali, Valle del Cauca, Colombia along north-south transect using polyurethane foam disk as passive air samplers. Atmospheric Pollution Research, v. 7, (6), 945-953. https://doi.org/10.1016/j.apr.2016.05.006.
Ambade, B.; Kumar, A.; Kumar, A.; Sahu, L.K., 2022. Temporal variability of atmospheric particulate-bound polycyclic aromatic hydrocarbons (PAHs) over central east India: sources and carcinogenic risk assessment. Air Qual Atmos Health, v. 15, 115-130. https://doi.org/10.1007/s11869-021-01089-5.
Aminiyan, M.M.; Kalantzi, O.I.; Etesami, H.; Khamoshi, S.E.; Begloo, R.H.; Aminiyan, F.M., 2021. Occurrence and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dust of an emerging industrial city in Iran: implications for human health. Environmental Science and Pollution Research, v. 28, 63359-63376. https://doi.org/10.1007/s11356-021-14839-w.
Anh, H.Q.; Watanabe, I.; Tue, N.M.; Viet, P.H.; Chi, N.K.; Minh, T.B.; Takahashi, S., 2020. Polyurethane foam-based passive air sampling for simultaneous determination of POP-and PAH-related compounds: A case study in informal waste processing and urban areas, northern Vietnam. Chemosphere, v. 247, 125991. https://doi.org/10.1016/j.chemosphere.2020.125991.
Arias, A.H.; Pozo, K.A.; Álvarez, M.B.; Pribylová, P.; Tombesi, N.B., 2022. Atmospheric PAHs in rural, urban, industrial and beach locations in Buenos Aires Province, Argentina: sources and health risk assessment. Environmental Geochemistry and Health, 44, 2419-2433. https://doi.org/10.1007/s10653-021-01031-9.
Azeredo, A.; Meire, R.O.; Torres, J.P.M.; Andrade, J.B.; Dorneles, P.R.; Malm, O., 2014. A pilot study on the PAH profile in air particulate matter from different sampling points in Feira de Santana (Bahia, Brazil). Organohalogen Compounds, v. 76, 1379-1382.
Balmer, J.E.; Hung, H.; Yu, Y.; Letcher, R.J.; Muir, D.C.G., 2019. Sources and environmental fate of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in the Arctic. Emerging Contaminants, v. 5, 128-142. https://doi.org/10.1016/j.emcon.2019.04.002.
Barros Júnior, W.W.D.R.; Silva, J.A.F.; Lugon Júnior, J.; Moreira, M.A.C.; Santos, L.F.U., 2018. Análise da paisagem com o uso de geotecnologias: uma proposta metodológica para o planejamento territorial da região hidrográfica VIII-RJ. Revista de Geociências do Nordeste, v. 4, n. esp., 166-190. https://doi.org/10.21680/2447-3359.2018v4n0ID16090.
Barroso, G.C.; Molisani, M.M., 2019. Pequenos estuários alimentados por pequenas bacias hidrográficas: estudo de caso dos estuários dos rios Macaé e das Ostras (RJ). In: Ferreira, M.I.P.; Barreto, G.S.; Lugon Junior, J.; Silva, J.A.F.; Barros, M.P.F. (eds.). Engenharia e Ciências Ambientais: contribuições à gestão ecossistêmica no estado do Rio de Janeiro. Essentia, Rio de Janeiro, pp. 116-141. https://doi.org/10.19180/978-85-99968-58-1.6.
Bohlin, P.; Jones, K.C.; Tovalin, H.; Strandberg, B., 2008. Observations on persistent organic pollutants in indoor and outdoor air using passive polyurethane foam samplers. Atmospheric Environment, v. 42, (31), 7234-7241. https://doi.org/10.1016/j.atmosenv.2008.07.012.
Carratalá, A.; Moreno-González, R.; León, V.M., 2017. Occurrence and seasonal distribution of polycyclic aromatic hydrocarbons and legacy and current-use pesticides in air from a Mediterranean coastal lagoon (Mar Menor, SE Spain). Chemosphere, v. 167, 382-395. https://doi.org/10.1016/j.chemosphere.2016.09.157.
Cheng, H.; Deng, Z.; Chakraborty, P.; Liu, D.; Zhang, R.; Xu, Y.; Luo, C.; Zhang, G.; Li, J., 2013. A comparison study of atmospheric polycyclic aromatic hydrocarbons in three Indian cities using PUF disk passive air samplers. Atmospheric Environment, v. 73, 16-21. https://doi.org/10.1016/j.atmosenv.2013.03.001.
Clark, S.N.; Schmidt, A.M.; Carter, E.M.; Schauer, J.J.; Yang, X.; Ezzati, M.; Daskalopoulou, S.S.; Baumgartner, J., 2019. Longitudinal evaluation of a household energy package on blood pressure, central hemodynamics, and arterial stiffness in China. Environmental Research, v. 177, 108592. https://doi.org/10.1016/j.envres.2019.108592.
Daly, G.L.; Lei, Y.D.; Castillo, L.E.; Muir, D.C.G.; Wania, F., 2007. Polycyclic aromatic hydrocarbons in Costa Rica air and soil: a tropical/temperate comparison. Atmospheric Environment, v. 41, (34), 7339-7350. https://doi.org/10.1016/j.atmosenv.2007.05.014.
Draxler, R.R.; Rolph, G.D., 2012. HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model. NOAA, Air Resources Laboratory, Silver Spring. (Accessed Nov 8, 2020). Available at:. https://www.ready.noaa.gov/HYSPLIT.php.
Drotikova, T.; Dekhtyareva, A.; Kallenborn, R.; Albinet, A., 2021. Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives in the Arctic boundary layer: seasonal trends and local anthropogenic influence. Atmospheric Chemistry and Physics, v. 21, (18), 14351-14370. https://doi.org/10.5194/acp-21-14351-2021.
Environmental Protection Agency (EPA), 1993. Provisional guidance for quantitative risk assessment of Polycyclic Aromatic Hydrocarbons. US Environmental Protection Agency, Office of Research and Development, Washington, D.C. (Accessed Sept 20, 2021). Available at:. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=49732.
Environmental Protection Agency (EPA), 2013. EPA’s 2013 Changes to the Particulate Matter (PM) Standard. US Environmental Protection Agency, Congressional Research Service, Washington, D.C. (Accessed July 20, 2021). Available at:. https://sgp.fas.org/crs/misc/R42934.pdf.
Estellano, V.H.; Pozo, K.; Harner, T.; Corsolini, S.; Focardi, S., 2012. Using PUF disk passive samplers to simultaneously measure air concentrations of persistent organic pollutants (POPs) across the Tuscany Region, Italy. Atmospheric Pollution Research, v. 3, (1), 88-94. https://doi.org/10.5094/APR.2012.008.
Fadel, M.; Courcot, D.; Afif, C.; Ledoux, F., 2022. Methods for the assessment of health risk induced by contaminants in atmospheric particulate matter: a review. Environmental Chemistry Letters, v. 20, 3289-3311. https://doi.org/10.1007/s10311-022-01461-6.
Freitas, L.E.; Nunes, F.S.B.; Cruz, J.C.H.O.; Vilela, C.; Mendes, S.; Silva, A.C.; Borges, G., 2015. Atlas Ambiental da Bacia Hidrográfica do Rio Macaé. Prefeitura de Macaé, Nova Tríade do Brasil, Rio de Janeiro, 98 pp. (Accessed July 19, 2022). Available at: https://macae.rj.gov.br/midia/conteudo/arquivos/1460067952.pdf.
Gao, P.; Silva, E.; Hou, L.; Denslow, N.D.; Xiang, P.; Ma, L.Q., 2018. Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environment International, v. 119, 466-477. https://doi.org/10.1016/j.envint.2018.07.017.
Gbeddy, G.; Goonetilleke, A.; Ayoko, G.A.; Egodawatta, P., 2020. Transformation and degradation of polycyclic aromatic hydrocarbons (PAHs) in urban road surfaces: Influential factors, implications and recommendations. Environmental Pollution, v. 257, 113510. https://doi.org/10.1016/j.envpol.2019.113510.
Gomez Pelaez, L.M.; Santos, J.M.; Almeida Albuquerque, T.T.; Reis, N.C.; Andreao, W.L.; Andrade, M.F., 2020. Air quality status and trends over large cities in South America. Environmental Science & Policy, 114, 422-435. https://doi.org/10.1016/j.envsci.2020.09.009.
Guida, Y.A.; Carvalho, G.O.; Capella, R.; Pozo, K.; Lino, A.S.; Azeredo, A.; Carvalho, D.F.P.; Braga, A.L.F.; Torres, J.P.M.; Meire, R.O., 2021a. Atmospheric Occurrence of Organochlorine Pesticides and Inhalation Cancer Risk in Urban Areas at Southeast Brazil. Environmental Pollution, v. 271, 116359. https://doi.org/10.1016/j.envpol.2020.116359.
Guida, Y.A.; Meire, R.O.; Torres, J.P.M.; Malm, O., 2018. Air contamination by legacy and current-use pesticides in Brazilian mountains: An overview of national regulations by monitoring pollutant presence in pristine areas. Environmental Pollution, v. 242, (part A), 19-30. https://doi.org/10.1016/j.envpol.2018.06.061.
Guida, Y.A.; Pozo, K.; Carvalho, G.O.; Capella, R.; Targino, A.C.; Torres, J.P.M.; Meire, R.O. (2021b). Occurrence of pyrethroids in the atmosphere of urban areas of Southeastern Brazil: Inhalation exposure and health risk assessment. Environmental Pollution, v. 290, 118020. https://doi.org/10.1016/j.envpol.2021.118020.
Harner, T.; Su, K.; Genualdi, S.; Karpowicz, J.; Ahrens, L.; Mihele, C.; Schuster, J.; Charland, J.P.; Narayan, J., 2013. Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs). Atmospheric Environment, v. 75, 123-128. https://doi.org/10.1016/j.atmosenv.2013.04.012.
Health Effects Institute (HEI), 2020. State of Global Air 2020. Health Effects Institute (HEI), Institute for Health Metrics and Evaluation (IHME). (Accessed July 17, 2022). Available at:. https://www.c40knowledgehub.org/s/article/State-of-Global-Air?language=en_US.
Hussain, K.; Hoque, R.R.; Balachandran, S.; Medhi, S.; Idris, M.G.; Rahman, M.; Hussain, F.L., 2018. Monitoring and risk analysis of PAHs in the environment. In: Hussain, C. (ed.). Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_29-2.
Ilango, S.D.; Chen, H.; Hystad, P.; van Donkelaar, A.; Kwong, J.C.; Tu, K.; Martin, R.V.; Benmarhnia, T., 2020. The role of cardiovascular disease in the relationship between air pollution and incident dementia: a population-based cohort study. International Journal of Epidemiology, v. 49, (1), 36-44. https://doi.org/10.1093/ije/dyz154.
Instituto Brasileiro de Geografia e Estatística (IBGE), 2010. IBGE Cidades. (Accessed Nov 2, 2018) at:. https://cidades.ibge.gov.br/brasil/rj/macae/panorama.
Instituto Brasileiro de Geografia e Estatística (IBGE), 2019. Estimativas populacionais dos municípios em 2019. (Accessed Aug 5, 2021) at:. https://sidra.ibge.gov.br/tabela/6579.
International Agency for Research on Cancer (IARC), 1987. In overall evaluations of carcinogenicity: an updating of IARC monographs. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Supplement 7. International Agency for Research on Cancer, World Health Organization, Lyon, 42 v. (Accessed June 12, 2021). Available at:. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-Supplements/Overall-Evaluations-Of-Carcinogenicity-An-Updating-Of-IARC-Monographs-Volumes-1%E2%80%9342-1987.
Jaganathan, S.; Jaacks, L.M.; Magsumbol, M.; Walia, G.K.; Sieber, N.L.; Shivasankar, R.; Dhillon, P.K.; Hameed, S.S.; Schwartz, J.; Prabhakaran, D., 2019. Association of long-term exposure to fine particulate matter and cardio-metabolic diseases in low- and middle-income countries: a systematic review. International Journal of Environmental Research and Public Health, v. 16, (14), 2541-2559. https://doi.org/10.3390/ijerph16142541.
Khalikov, I.S., 2018. Identification of sources of environmental pollution by polycyclic aromatic hydrocarbons on the basis of their molar ratios. Russian Journal of General Chemistry, v. 88, 2871-2878. https://doi.org/10.1134/S1070363218130078.
Klanova, J.; Cupr, P.; Holoubek, I.; Boruvkova, J.; Pribylova, P.; Kares, R.; Kohoutek, J.; Dvorska, A.; Komprda, J., 2009. Towards the global monitoring of POP - contribution of the MONET Networks. Masaryk University. Brno, 50 pp. (Accessed July 11, 2020). Available at:. https://www.genasis.cz/res/file/publications/reports/towards-the-global-monitoring-of-pops.pdf.
Krauss, M.; Wilcke, W.; Martius, C.; Bandeiram A.G.; Garcia, M.V.B.; Amelung, W., 2005. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environmental Pollution, v. 135, (1), 143-154. https://doi.org/10.1016/j.envpol.2004.09.012.
Låg, M.; Øvrevik, J.; Refsnes, M.; Holme, J.A., 2020. Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respiratory Research, v. 21, (1), 299. https://doi.org/10.1186/s12931-020-01563-1.
Lee, J.; Kalia, V.; Perera, F.; Herbstman, J.; Li, T.; Nie, J.; Qu, L.R.; Yu, J.; Tang, D., 2017. Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort. Environment International, v. 99, 315-320. https://doi.org/10.1016/j.envint.2016.12.009.
Li, Z.; Cao, Y.; Qin, H.; Ma, Y.; Pan, L.; Sun, J., 2022. Integration of chemical and biological methods: A case study of polycyclic aromatic hydrocarbons pollution monitoring in Shandong Peninsula, China. Journal of Environmental Sciences, v. 111, 24-37. https://doi.org/10.1016/j.jes.2021.02.025.
Mallah, M.A.; Changxing, L.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A.A.; Wang, W.; Jabar, A.; Naveed, M.; Li, J.H.; Zhang, Q., 2022. Polycyclic aromatic hydrocarbon and its effects on human health: An overview. Chemosphere, v. 296, 133948. https://doi.org/10.1016/j.chemosphere.2022.133948.
Meire, R.O.; Azeredo, A.; Torres, J.P.M., 2007. Aspectos ecotoxicológicos de hidrocarbonetos policíclicos aromáticos. Oecologia Brasiliensis, v. 11, (2), 188-201. http://dx.doi.org/10.4257/oeco.2007.1102.03.
Meire, R.O.; Khairy, M.; Aldeman, D.; Galvão, P.M.A.; Torres, J.P.M.; Malm, O.; Lohmann, R., 2019. Passive sampler-derives concentrations of PAHs in air and water along Brazilian mountain transects. Atmospheric Pollution Research, v. 10, (2), p. 635-641. https://doi.org/10.1016/j.apr.2018.10.012.
Meire, R.O.; Khairy, M.; Targino, A.C.; Galvão, P.M.A.; Torres, J.P.M.; Malm, O.; Lohmann, R., 2016. Use of passive samplers to detect organochlorine pesticides in air and water at wetland mountain region sites (S-SE Brazil). Chemosphere, v. 144, 2175-2182. https://doi.org/10.1016/j.chemosphere.2015.10.133.
Melymuk, L.; Nizzetto, P.B.; Harner, T.; White, K.B.; Wang, X.; Tominaga, M.Y.; Klánová, J., 2021. Global intercomparison of polyurethane foam passive air samplers evaluating sources of variability in SVOC measurements. Environmental Science & Policy, 125, 1-9. https://doi.org/10.1016/j.envsci.2021.08.003.
Melymuk, L.; Robson, M.; Helm, P.A.; Diamond, M.L., 2012. PCBs, PBDEs and PAHs in Toronto air: spatial and seasonal trends and implications for contaminant transport. Science of the Total Environment, v. 429, 272-280. https://doi.org/10.1016/j.scitotenv.2012.04.022.
Miura, K.; Shimada, K.; Sugiyama, T.; Sato, K.; Takami, A.; Chan, C.K.; Kim, I.S.; Kim, Y.P.; Lin, N.H.; Hatakeyama, S., 2019. Seasonal and annual changes in PAH concentrations in a remote site in the Pacific Ocean. Science Reports, v. 9, 12591. https://doi.org/10.1038/s41598-019-47409-9.
Mohammadi, M.J.; Goudarzi, G.; Dehaghi, B.F.; Zarea, K.; Hormati, M.; Taherian, M.; Kiani, F., 2022. Polycyclic aromatic hydrocarbons and their effects on the occurrence of chronic obstructive pulmonary disease (COPD): a review. Jundishapur Journal of Chronic Disease Care, v. 11, (3), e122852. https://doi.org/10.5812/jjcdc-122852.
Naydenova, S.; Veli, A.; Mustafa, Z.; Hudai, S.; Hristova, E.; Gonsalvesh-Musakova, L., 2022. Atmospheric levels, distribution, sources, correlation with meteorological parameters and other pollutants and health risk of PAHs bound in PM2.5 and PM10 in Burgas, Bulgaria–a case study. Journal of Environmental Science and Health, Part A, v. 57 (4), 306-317. https://doi.org/10.1080/10934529.2022.2060669.
Nguyen, T.N.T.; Kwon, H.O.; Lammel, G.; Jung, K.S.; Lee, S.J.; Choi, S.D., 2020. Spatially high-resolved monitoring and risk assessment of polycyclic aromatic hydrocarbons in an industrial city. Journal of Hazardous Materials, v. 393, 122409. https://doi.org/10.1016/j.jhazmat.2020.122409.
Petrobras, 2019. Bacia de Campos. (Accessed Oct 3, 2021). Available at: http://www.petrobras.com.br/pt.
Peverly, A.A.; Ma, Y.; Venier, M.; Rodenburg, Z.; Spak, S.N.; Hornbuckle, K.C.; Hites, R.A., 2015. Variations of flame retardant, polycyclic aromatic hydrocarbon, and pesticide concentrations in Chicago's atmosphere measured using passive sampling. Environmental Science & Technology, v. 49, (9), 5371-5379. https://doi.org/10.1021/acs.est.5b00216.
Pokhrel, B.; Gong, P.; Wang, X.; Wang, C.; Gao, S., 2018. Polycyclic aromatic hydrocarbons in the urban atmosphere of Nepal: Distribution, sources, seasonal trends, and cancer risk. Science of the Total Environment, v. 618, 1583-1590. https://doi.org/10.1016/j.scitotenv.2017.09.329.
Pozo, K.; Estellano, V.H.; Harner, T.; Diaz-Robles, L.; Cereceda-Balic, F.; Etcharren, P.; Pozo, K.; Vidal, V.; Guerrero, F.; Vergara-Fernández, A., 2015. Assessing Polycyclic Aromatic Hydrocarbons (PAHs) using passive air sampling in the atmosphere of one of the most wood-smoke-polluted cities in Chile: The case study of Temuco. Chemosphere, v. 134, 475-481. https://doi.org/10.1016/j.chemosphere.2015.04.077.
Pozo, K.; Gómez, V.; Tucca, F.; Galbán-Malagón, C.; Ahumada, R.; Rudolph, A.; Klánováa, J.; Lammel, G., 2022. Multicompartmental analysis of POPs and PAHs in Concepciόn Bay, central Chile: Part II–Air-sea exchange during Austral summer. Marine Pollution Bulletin, v. 177, 113518. https://doi.org/10.1016/j.marpolbul.2022.113518.
Pozo, K.; Harner, T.; Lee, S.C.; Wania, F.; Muir, D.C.G.; Jones, K.C., 2009. Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPs study. Environmental Science & Technology, v. 43, (3), 796-803. https://doi.org/10.1021/es802106a.
Pozo, K.; Harner, T.; Rudolph, A.; Oyola, G.; Estellano, V.H.; Ahumada-Rudolph, R.; Garrido, M.; Pozo, K.; Mabilia, R.; Focardi, S., 2012. Survey of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of rural, urban and industrial areas of Concepción, Chile, using passive air samplers. Atmospheric Pollution Research, v. 3, (4), 426-434. https://doi.org/10.5094/APR.2012.049.
Prats, R.M.; Van Drooge, B.L.; Fernández, P.; Grimalt, J.O., 2022. Field comparison of passive polyurethane foam and active air sampling techniques for analysis of gas-phase semi-volatile organic compounds at a remote high-mountain site. Science of the Total Environment, v. 803, p. 149738. https://doi.org/10.1016/j.scitotenv.2021.149738.
Ramires, J.C.L., 1991. As grandes corporações e a dinâmica socioespacial: a ação da Petrobras em Macaé. Revista Brasileira de Geografia, v. 53, (4), 115-151.
Rodriguez-Aguilar, M.; Diaz de Leon-Martinez, L.; Garcia-Luna, S.; Gomez-Gomez, A.; Gonzalez-Palomo, A.K.; Perez-Vazquez, F.J.; Díaz-Barriga, F.; Trujillo, J.; Flores-Ramírez, R., 2019. Respiratory health assessment and exposure to polycyclic aromatic hydrocarbons in Mexican indigenous population. Environmental Science and Pollution Research International, v. 26, (25), 25825-25833. https://doi.org/10.1007/s11356-019-05687-w.
Santana, J.C.C.; Miranda, A.C.; Yamamura, C.L.K.; Silva Filho, S.C.D.; Tambourgi, E.B.; Lee Ho, L.; Berssaneti, F.T., 2020. Effects of Air Pollution on Human Health and Costs: Current Situation in São Paulo, Brazil. Sustainability, v. 12, (12), 4875. https://doi.org/10.3390/su12124875.
Santiago, E.C.; Cayetano, M.G., 2007. Polycyclic aromatic hydrocarbons in ambient air in the Philippines derived from passive sampler with polyurethane foam disk. Atmospheric Environment, v. 41, (19), 4138-4147. https://doi.org/10.1016/j.atmosenv.2007.01.021.
Schuster, J.K.; Harner, T.; Su, K.; Mihele, C.; Eng, A., 2015. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds. Environmental Science & Technology, v. 49, (5), 2991-2998. https://doi.org/10.1021/es505684e.
Shafie, S.H.M.; Mahmud, M., 2020. Urban air pollutant from motor vehicle emissions in Kuala Lumpur, Malaysia. Aerosol and Air Quality Research, v. 20, (12), 2793-2804. https://doi.org/10.4209/aaqr.2020.02.0074.
Shoeib, M.; Harner, T., 2002. Characterization and comparison of three passive air samplers for persistent organic pollutants. Environmental Science & Technology, v. 36, (19), 4142-4151. https://doi.org/10.1021/es020635t.
Silva, I.; Almeida, D.S.; Hashimoto, E.M.; Martins, L.P., 2020. Risk assessment of temperature and air pollutants on hospitalizations for mental and behavioral disorders in Curitiba, Brazil. Environ Health, v. 19, 79. https://doi.org/10.1186/s12940-020-00606-w.
Silva, M.T.; Leal, G.F. 2020. A insustentabilidade do trabalho de Sísifo: observações críticas sobre o desenvolvimento sustentável a partir do caso de Macaé-RJ. Estudos de Administração e Sociedade, v. 5, (1), 13-27. https://doi.org/10.22409/eas.v5i1.42603.
Silva, O.T.D. 2020. A relação entre economia e natureza no capitalismo: uma discussão a partir da urbanização da cidade de Macaé-RJ. Espaço e Economia. Revista Brasileira de Geografia Econômica, (20), 1-18. https://doi.org/10.4000/espacoeconomia.17338.
Speciale, A.; Zena, R.; Calabrò, C.; Bertuccio, C.; Aragona, M.; Saija, A.; Trombetta, D.; Cimino, F.; Lo Cascio, P., 2018. Experimental exposure of blue mussels (Mytilus galloprovincialis) to high levels of benzo[a]pyrene and possible implications for human health. Ecotoxicology and Environmental Safety, v. 150, 96-103. https://doi.org/10.1016/j.ecoenv.2017.12.038.
Stading, R.; Gastelum, G.; Chu, C.; Jiang, W.; Moorthy, B., 2021. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer. Seminars in Cancer Biology, v. 76, 3-16. https://doi.org/10.1016/j.semcancer.2021.07.001.
Stogiannidis, E.; Laane, R., 2015. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Reviews of Environmental Contamination and Toxicology, v. 234, 49-133. https://doi.org/10.1007/978-3-319-10638-0_2.
Strandberg, B.; Österman, C.; Koca Akdeva, H.; Moldanová, J.; Langer, S., 2022. The use of polyurethane foam (PUF) passive air samplers in exposure studies to PAHs in Swedish seafarers. Polycyclic Aromatic Compounds, v. 42, (2), 448-459. https://doi.org/10.1080/10406638.2020.1739084.
Talaska, G.; Thoroman, J.; Schuman, B.; Kafferlein, H.U., 2014. Biomarkers of polycyclic aromatic hydrocarbon exposure in European coke oven workers. Toxicology Letters, v. 231, (2), 213-216. https://doi.org/10.1016/j.toxlet.2014.10.025.
Thang, P.Q.; Kim, S.J.; Lee, S.J.; Kim, C.H.; Lim, H.J.; Lee, S.B.; Kim, J.Y.; Vuong, Q.T.; Choi, S.D., 2020. Monitoring of polycyclic aromatic hydrocarbons using passive air samplers in Seoul, South Korea: Spatial distribution, seasonal variation, and source identification. Atmospheric Environment, v. 229, 117460. https://doi.org/10.1016/j.atmosenv.2020.117460.
Tobiszewski, M.; Namiésnik, J., 2012. PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, v. 162, 110-119. https://doi.org/10.1016/j.envpol.2011.10.025
United Nations Environment Programme (UNEP), 2002. Regionally Based Assessment of Persistent Toxic Substances - Eastern and Western South America Regional Report. UNEP. (Accessed June 22, 2020). Available at:. https://wedocs.unep.org/handle/20.500.11822/32514
Wang, L.; Zhao, Y.; Yi, X.; Wang, Z.; Yi, Y.; Huang, T.; Gao, H.; Ma, J., 2017. Spatial distribution of atmospheric PAHs and their genotoxicity in petrochemical industrialized Lanzhou valley, northwest China. Environmental Science and Pollution Research, v. 24, (14), 12820-12834. https://doi.org/10.1007/s11356-017-8808-9.
Wang, Y.; Zhang, Q.; Zhang, Y.; Zhao, H.; Tan, F.; Wu, X.; Chen, J., 2019. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the air of Dalian, China: Correlations with six criteria air pollutants and meteorological conditions. Chemosphere, v. 216, 516-523. https://doi.org/10.1016/j.chemosphere.2018.10.184.
Wilcke, W.; Amelung, W.; Krauss, M.; Martius, C.; Bandeira, A.; Garcia, M., 2003. Polycyclic aromatic hydrocarbon (PAH) patterns in climatically different ecological zones of Brazil. Organic Geochemistry, v. 34, (10), 1405-1417. https://doi.org/10.1016/S0146-6380(03)00137-2.
Wilcke, W.; Amelung, W.; Martius, C.; Garcia, M.V.B.; Zech, W., 2000. Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian Rain Forest. Journal of Plant Nutrition and Soil Science, v. 163, (1), 27-30. https://doi.org/10.1002/(SICI)1522-2624(200002)163:1%3C27::AID-JPLN27%3E3.0.CO;2-E.
World Health Organization (WHO), 2015. Health and the environment: addressing the health impact of air pollution: report by the secretariat. Sixty-Eighth World Health Assembly, Provisional Agenda, item 14.6. WHO, pp. 1-6. (Accessed June 22, 2020). Available at:. https://apps.who.int/iris/handle/10665/176781.
World Health Organization (WHO), 2016. Ambient air pollution: A global assessment of exposure and burden of disease. WHO, 121 pp. (Accessed June 22, 2020). Available at:. https://apps.who.int/iris/handle/10665/250141.
Yang, L.; Zhang, H.; Zhang, X.; Xing, W.; Wang, Y.; Bai, P.; Zhang, L.; Hayakawa, K.; Toriba, A.; Tang, N., 2021. Exposure to atmospheric particulate matter-bound polycyclic aromatic hydrocarbons and their health effects: a review. International Journal of Environment Research Public Health, v. 18, (4), 2177. https://doi.org/10.3390/ijerph18042177.
Yao, Y.; Meng, X.Z.; Wu, C.C.; Bao, L.J.; Wang, F.; Wu, F.C.; Zeng, E.Y., 2016. Tracking human footprints in Antarctica through passive sampling of polycyclic aromatic hydrocarbons in inland lakes. Environmental Pollution, v. 213, 412-419. https://doi.org/10.1016/j.envpol.2016.02.035.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.