Application of the Analytic Hierarchy Process for selection of alternative solutions for domestic wastewater treatment
DOI:
https://doi.org/10.5327/Z2176-94781378Keywords:
analytic hierarchy method; rural sanitation; wastewater treatment.Abstract
Choosing the best form of domestic sewage treatment requires analyses that allow decision-making on the ideal solutions for implementation, according to the particularities of each regionality, especially when it comes to rural and isolated areas dependent on decentralized solutions. Thus, through this study, the Analytic Hierarchy Process(AHP) was used from a data collection on simplified treatment systems existing in temperate municipalities without a dry season, to evaluate priority systems in different scenarios considering environmental, social, and technical-economic indicators. Among the results for the scenarios performed, the compact upflow anaerobic reactor, the septic tank and anaerobic filter, and the septic tank and built-in flooded system of vertical subsurface flow were the solutions that proved to be the most indicated following the indicators used and the existing information. It is noteworthy that the results refer to the study area in question, and new applications of the method are needed in different climatic regions. From the application of the methodology, the AHP tool indicated that it is a viable method to assist in decision-making regarding the selection of sewage treatment systems in rural areas, which, being tied to municipal planning in basic sanitation, assists in the optimization of existing resources. The sensitivity of the method showed the importance of its application with data collected on site,in addition to the incorporation of public and experts opinions in the contribution of the degree of importance of the criteria and indicators used.
Downloads
References
Alvarez, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
Associação Brasileira de Normas Técnicas (ABNT), 1997. Norma Brasileira 13969: Tanques sépticos – Unidades de tratamento complementar e disposição final de efluentes líquidos – Projeto, construção e operação. Rio de Janeiro: ABNT.
Borza, S.; Petrescu, V., 2016. The Olt River pollution monitoring, using spacial analisys, analityc hierarchy process and technique for order preference by similarity methods. Process Safety and Environmental Protection, v. 101, 9-18. https://doi.org/10.1016/j.psep.2016.01.002.
Campolina, A.G.; Soárez, P.C.; Amaral, F.V.; Abe, J.M., 2017. Análise de decisão multicritério para alocação de recursos e avaliação de tecnologias em saúde: tão longe e tão perto? Caderno de Saúde Pública, v. 33, (10), 1-15. https://doi.org/10.1590/0102-311X00045517.
Dotro, G.; Langergraber, G.; Molle, P.; Nivala, J.; Puigagut, J.; Stain, O.; Von Sperling, M., 2017. Treatment wetlands. London, IWA, v. 7, 155 p.
Francisco, C.E.S.; Coelho, R.M.; Torres, R.B.; Adami, S.F., 2007. Espacialização de análise multicriterial em SIG: prioridades para recuperação de Áreas de Preservação Permanente. In: XIII Simpósio Brasileiro de Sensoriamento Remoto. Anais [...]. Florianópolis: INPE, pp. 2643-2650.
Fundação Nacional de Saúde (Funasa), 2019. Programa Nacional de Saneamento Rural. Brasília: Ministério da Saúde, 266 p.
Kellner, E.; Calijuri, M.C.; Pires, E.C., 2009. Aplicação de Indicadores de sustentabilidade para lagoas de estabilização. Engenharia Sanitária e Ambiental, v. 14, (4), 455-464. https://doi.org/10.1590/S1413-41522009000400005.
Lima, G.S.; Nunes, A.B.A.; Magalhães, A.M.C.; Campos, V.R., 2020. Aplicação de metodologia de análise hierárquica (AHP) para priorização de intervenção em estações de tratamento de esgotos – Estudo de caso na Bacia do Siqueira, Fortaleza/CE. Revista DAE, v. 68, (225), 34-50. https://doi.org/10.36659/dae.2020.051.
Metcalf & Eddy, Inc.; Tchobanoglous, G.; Burton, F.L.; Stensel, H.D., 2003. Wastewater Engineering – Treatment and Reuse. 4ª ed.. McGraw-Hill Companies, 1878 p.
Molinos-Senante, M.; Gomez, T.; Garrido-Besarba, M.; Caballero, R.; Sala-Garrido, R., 2014. Assessing the sustainability of small wastewater treatment systems: A composite indicator approach. Science of the Total Environment, v. 497-498, 607-617. https://doi.org/10.1016/j.scitotenv.2014.08.026.
Ouyang, X.; Guo, F.; Shan, D.; Yu, H.; Wang, J., 2015. Development of the integrated fuzzy analytical hierarchy process with multidimensional scaling in selection of natural wastewater treatment alternatives. Ecological Engineering, v. 74, 438-447. https://doi.org/10.1016/j.ecoleng.2014.11.006.
Pereira, A.C.; Maragon, B.B.; Santos, T.C.C.; Rezende, A.A.P., 2019. Definição de critérios para escolha de alternativas de sistemas individuais de esgotamento sanitário. In: Congresso Brasileiro de Engenharia Sanitária e Ambiental, 30., Natal, Anais [...]. Natal: ABES.
Saaty, R.W., 1987. The analytic hierarchy process – what it is and how it is used. Mathematical Modelling, v. 9, (3-5), 161-176. https://doi.org/10.1016/0270-0255(87)90473-8.
Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, v. 15, (3), 234-281. https://doi.org/10.1016/0022-2496(77)90033-5.
Saaty, T.L., 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences, v. 1, (1), 83-98. https://doi.org/10.1504/IJSSCI.2008.017590.
Sanches, A.B., 2009. Avaliação da sustentabilidade de sistemas de tratamento de esgotos sanitários: uma proposta metodológica. Doctoral Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre.
Soares, R.V.; Batista, A.C.; Tetto, A.F., 2015. Meteorologia e climatologia florestal. Curitiba: Universidade Federal do Paraná, 215 p.
Sun, Y.; Garrido-Baserda, M.; Molinos-Senante, M.; Donikian, N.A.; Poch, M.; Rosso, D., 2020. A composite indicator approach to assess the sustainability and resilience of wastewater management alternatives. Science of the Total Environment, v. 725, 138286. https://doi.org/10.1016/j.scitotenv.2020.138286.
Tilley, E.; Lukas, U.; Luthi, C.; Reymond, P.; Zurbrugg, C., 2014. Compendium of Sanitation Systems and Technologies. Dübendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology (Eawag), 180 p.
Tonetti, A.L.; Brasil, A.L.; Madrid, F.J.P.L.; Figueiredo, I.C.S.; Schneider, J.; Cruz, L.M.O.; Duarte, N.C.; Fernandes, P.M.; Coasaca, R.L.; Garcia, R.S.; Magalhães, T.M., 2018. Tratamento de esgotos domésticos em comunidades isoladas: referencial para a escolha de soluções. Campinas: Universidade Estadual de Campinas, 153 p.
Tres, V., 2021. Estudo de viabilidade técnica-econômica, social e ambiental para seleção de tratamento de esgoto doméstico em áreas rurais. Dissertação de mestrado, Universidade Tecnológica Federal do Paraná, Curitiba.
Velasquez, M.; Hester, P.T., 2013. An Analysis of Multi-Criteria Decision Making Methods. International Journal of Operations Research, v. 10, (2), 56-66.
Von Sperling, M., 2014. Princípios do tratamento biológico de águas residuárias. introdução à qualidade das águas e ao tratamento de esgotos. Belo Horizonte: Editora UFMG, v. 1, 472 p.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.