Natural weathering of composites developed from cellulose waste and post-consumer paper
DOI:
https://doi.org/10.5327/Z2176-94781350Keywords:
environmental degradation; solid waste; tape-casting; thermoplastic starch.Abstract
The development of materials that are highly degradable at the end of their life cycle helps reduce the volume of solid waste disposed of in landfills. This study aimed to produce composites from cellulose and paper residues as reinforcing fibers and from thermoplastic starch (TPS) as a matrix to analyze the effect of exposure to natural weathering in the environments of two Universities, one in Brazil (Universidade Feevale) and the other in Finland (HAMK). During the test period, the season in Brazil was summer, with high temperatures and solar radiation; in Finland, the season was winter, with negative temperatures, high air humidity, and snowfall. The materials were prepared using the tape-casting method and characterized by Dynamic Mechanical Analysis (DMA) and Thermogravimetric Analysis (TGA), having been subjected to the weather for 0, 28, and 42 days at Universidade Feevale and HAMK. At the end of each period, they were characterized by Scanning Electron Microscopy (SEM) and photographs. The results showed that the thermal stability of the composites was better compared to TPS and cellulose, and superior mechanical properties were shown in the cellulose-based composite. Thus, heterogeneous mixtures emerged from the addition of fibers to the polymer matrix. After the environmental exposure, the visualization of the micrographs and photographs indicated that the samples exposed in the two environments were brittle, shrunken, yellowed, and cracked. It was also verified that the samples exposed at Universidade Feevale suffered greater environmental degradation, and the incorporation of fibers in the composites delayed this effect at the two study sites.
Downloads
References
Area, M.R.; Rico, M.; Monteiro, B.; Barral, L.; Bouza, R.; López, J.; Ramírez, C., 2019. Corn starch plasticized with isosorbide and filled with microcrystalline cellulose: Processing and characterization. Carbohydrate Polymers, v. 206, 726-733. https://doi.org/10.1016/j.carbpol.2018.11.055.
Arpaci, S.S.; Tomak, E.D.; Ermedyan, M.A.; Yildirim, I., 2021. Natural weathering of sixteen wood species: Changes on surface properties. Polymer Degradation and Stability, v. 183, 109415. https://doi.org/10.1016/j.polymdegradstab.2020.109415.
Associação Brasileira de Celulose e Papel (BRACELPA), 2013. Relatório Estatístico 2011/2012 (Accessed Feb. 15, 2022) at.: http://www.bibliotecaflorestal.ufv.br/handle/123456789/7743.
Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais (ABRELPE), 2021. Panorama dos Resíduos Sólidos no Brasil (Accessed Feb. 16, 2022) at.: https://abrelpe.org.br/panorama-2021/.
Associação Nacional dos Aparistas de Papel (ANAP), 2021. Relatório Anual 2019 – 2020 (Accessed Feb. 15, 2022) at.: https://anap.org.br/relatorio-anual-2019/.
Behera, K.; Sivanjineyulu, V.; Chang, Y.-H.; Chiu, F.-C., 2018. Thermal properties, phase morphology and stability of biodegradable PLA/PBSL/HA composites. Polymer Degradation and Stability, v. 154, (3), 248-260. https://doi.org/10.1016/j.polymdegradstab.2018.06.010.
Bertuzzi, M.A.; Armanda, M.; Gottifredi, J.C., 2007. Physicochemical characterization of starch based films. Journal of Food Engineering, v. 82, (1), 17-25. https://doi.org/10.1016/j.jfoodeng.2006.12.016.
Bootklad, M.; Kaewtatip, K., 2013. Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydrate Polymers, v. 97, (2), 315-320. https://doi.org/10.1016/j.carbpol.2013.05.030.
Brasil, 2010. Política Nacional de Resíduos Sólidos – PNRS. Lei nº 12.305, de 2 de agosto de 2010. Diário Oficial da União, Brasília.
Brasil, 2022. Ministério do Meio Ambiente. Cidades sustentáveis, resíduos sólidos (Accessed Jan. 10, 2022) at.: https://antigo.mma.gov.br/cidades-sustentaveis/residuos-solidos.
Castro, K.; Princi, E.; Proietti, N.; Manso, M.; Capitani, D.; Vicini, S.; Madariaga, J.M.; Carvalho, M.L., 2011. Assessment of the weathering effects on cellulose based materials through a multianalytical approach. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 269, (12), 1401-1410. https://doi.org/10.1016/j.nimb.2011.03.027.
Chueangchayaphan, N.; Ting, K.A.; Yusoff, M.; Chuengchayaphan, W., 2019. Influence of Al2O3 particle size on properties of thermoplastic starch–TiO2–Al2O3 composites. Polymer Bulletin, v. 76, (2), 5889-5902. https://doi.org/10.1007/s00289-019-02688-0.
Corradini, E.; Imam, S.H.; Agnelli, J.A.M.; Mattoso, L.H.C, 2009. Effect of coconut, sisal and jute fibers on the properties of starch/gluten/glycerol matrix. Journal of Polymers and the Environment, v. 17, (1), 1-9. https://doi.org/10.1007/s10924-009-0115-1.
Counsell, T.A.M.; Allwood, J.M., 2006. Desktop paper recycling: A survey of novel technologies thatmight recycle office paper within the office. Journal of Materials Processing Technology, v. 173, (1), 111-123. https://doi.org/10.1016/j.jmatprotec.2005.11.017.
Dahlbo, H.; Poliakova, V.; Mylläri, V.; Sahimaa, O.; Anderson, R., 2018. Recycling potential of post-consumer plastic packaging waste in Finland. Waste Management, v. 71, 52-61. https://doi.org/10.1016/j.wasman.2017.10.033.
Dai, H.; Chang, P.R.; Geng, F.; Yu, J.; Ma, X., 2009. Preparation and properties of thermoplastic starch / montmorillonite nanocomposites using N-(2-hydroxyethyl)formamide as a new additive. Journal of Polymers and the Environment, v. 17, 225. https://doi.org/10.1007/s10924-009-0142-y.
De Spirito, M.; Missori, M.; Papi, M.; Maulucci, G.; Teixeira, J.; Castellano, C.; Arcovito, G., 2008. Modifications in solvent clusters embedded along the fibers of a cellulose polymer network cause paper degradation. Physical Review, v. 77, 041801. https://doi.org/10.1103/PhysRevE.77.041801.
Dungani, R.; Aditiawati, P.; Islam, M.N.; Aprilia, N.A.S.; Hartati, S.; Sulaeman, A.; Sumardi, I.; Karliati, T.; Yuniarti, K., 2019. Evaluation of the effects of decay and weathering in cellulose-reinforced fiber composites. In: Jawaid, M.; Tahriq, M.; Saba, N. (eds.). Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Cambridge: Elsevier, pp. 173-200.
Fabiyi, J.S.; Macdonald, A.G.; Wolcott, M.P.; Griffths, P.R., 2008. Wood plastics composites weathering: visual appearence and chemical changes. Polymer Degradation and Stability, v. 93, (8), 1405-1414. https://doi.org/10.1016/j.polymdegradstab.2008.05.024.
Fahrngruber, B.; Eichelter, J.; Erhãusl, S.; Seidl, B.; Wimmer, R.; Mundigler, N., 2019. Potato fiber modified thermoplastic starch: effects of fiber content on material properties and compound characteristics. European Polymer Journal, v. 111, 170-177. https://doi.org/10.1016/j.eurpolymj.2018.10.050.
Famá, L.; Flores, S.K.; Gerschenson, L.; Goyanes, S., 2006. Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers, v. 66, (1), 8-15. https://doi.org/10.1016/j.carbpol.2006.02.016.
Fazeli, M.; Florez, J.P.; Simão, R.A., 2019. Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Composites Part B: Engineering, v. 163, 207-216. https://doi.org/10.1016/j.compositesb.2018.11.048.
Fechine, G.J.M.; Santos, J.A.B.; Rabello, M.S., 2006. Avaliação da fotodegradação de poliolefinas através de exposição natural e artificial. Química Nova, v. 29, n. 4, p. 674-680. https://doi.org/10.1590/S0100-40422006000400009.
Fuentes-Talavera, F.J.; Silva-Guzmán, J.A.; Quintana-Uscamayta, F.; Turrado-Saucedo, J.; Oscanoa, A.J.C.; Rodríguez-Anda, R.; Robledo-Ortiz, J.R., 2015. Comportamiento al intemperismo natural de compositos polipropileno-madera. Revista Mexicana de Ciencias Forestales, v. 6, (27), 102-113. https://doi.org/10.29298/rmcf.v6i27.284
Genovese, L.; Dominici, F.; Gigli, M.; Armentano, I.; Lotti, N.; Fortunati, E.; Siracusa, V.; Torre, L.; Munari, A., 2018. Processing, thermo-mechanical characterization and gas permeability of thermoplastic starch/poly(butylene trans-1,4- cyclohexanedicarboxylate) blends. Polymer Degradation and Stability, v. 157, 100-107. https://doi.org/10.1016/j.polymdegradstab.2018.10.004.
Ghanbari, A.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Mashkour, M., 2018a. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. International Journal of Biological Macromolecules, v. 112, 442-447. https://doi.org/10.1016/j.ijbiomac.2018.02.007.
Ghanbari, A.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Mashkour, M., 2018b. Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, v. 197, 305-311. https://doi.org/10.1016/j.carbpol.2018.06.017.
Gómez, C.; Torres, F.G.; Nakamatsu, J.; Arroyo, O.H., 2007. Thermal and structural analysis of natural fiber reinforced starch-based biocomposites. International Journal of Polymeric Materials and Polymeric Biomaterials, v. 55, (11), 893-907. https://doi.org/10.1080/00914030500522547.
International Organization for Standardization (ISO), 2009a. ISO 877-1. Methods of exposure to solar radiation - Part 1: General guidance. International Standard, Geneva.
International Organization for Standardization (ISO), 2009b. ISO 9370. 2009b. Plastics – Instrumental determination of radiant exposure in weathering tests – General guidance and basic test method. International Standard, Geneva.
Kahvand, F.; Fasihi, M., 2020. Microstructure and physical properties of thermoplastic corn starch foams as influenced by polyvinyl alcohol and plasticizer contentes. Internacional Journal of Biological Macromolecules, v. 157, 359-367. https://doi.org/10.1016/j.ijbiomac.2020.04.222.
Koohestani, B.; Darban, A.K.; Mokhtari, P.; Yilmaz, E.; Darezereshki, E., 2018. Comparison of different natural fiber treatments: a literature review. International Journal of Environmental Science and Technology, v. 16, 629-642. https://doi.org/10.1007/s13762-018-1890-9.
Krüger, D.; Rodrigues, R.A.; Escobar, C.C.; Correa, E.K., 2021. Poluição atmosférica: percepção da população de PelotasRS – Brasil sobre o tema. Ciências Agrárias, v. 19, (2), 201-209. https://doi.org/10.15536/thema.V19.2021.201-209.1532.
Kumar, T.S.M.; Raijini, N.; Reddy, O.; Rajulu, V.; Siengchin, S.; Ayrilmis, N., 2018. All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. International Journal of Biological Macromolecules. v. 112, 1310-1315. https://doi.org/10.1016/j.ijbiomac.2018.01.167.
Laycock, B.; Nikoli, M.; Colwell, J.M.; Gauthier, E.; Halley, P.; Bottle, S.; George, G., 2017. Lifetime prediction of biodegradable polymers. Progress in Polymer Science, v. 71, 144-189. https://doi.org/10.1016/j.progpolymsci.2017.02.004.
Lehtomäki, H.; Korhonen, A.; Asikainen, A.; Karvosenoja, N.; Kupiainen, K.; Paunu, V.-V.; Savolahti, M.; Sofiev, M.; Palamarchuk, Y.; Karppinen, A.; Kukkonen, J.; Hanninen, O., 2018. Impactos na saúde da poluição do ar ambiente na Finlândia. International Journal of Environment Research and Public Health, v. 15, (4), 736. https://doi.org/10.3390/ijerph15040736.
Lima, L.P.F.C.; Santana, R.M.C.; Rodríguez, C.D.C., 2020. Influence of coupling agent in mechanical, physical and thermal properties of polypropylene/bamboo fiber composites: under natural outdoor aging. Metallurgical and Materials Engineering, v. 12, (4), 929. https://doi.org/10.3390/polym12040929.
Liu, R.; Pang, X.; Yang, Z., 2017. Measurement of three wood materials against weathering during long natural sunlight exposure. Measurement, v. 102, 179-185. https://doi.org/10.1016/j.measurement.2017.01.034.
Liu, W.; Wang, Z.; Liu, J.; Dai, B.; Hu, S.; Hong, R.; Xie, H.; Li, Z.; Chen, Yi, Zeng, G., 2020. Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hidrocolloids, v. 108, 106006. https://doi.org/10.1016/j.foodhyd.2020.106006.
Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, F. S.; Nava-Saucedo, J.-E., 2008. Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere, v. 73, (4), p. 429-442. https://doi.org/10.1016/j.chemosphere.2008.06.064.
Machado, T.M.; Catapreta, L.C.; Furlan, E.F.; Neiva, C.R.P., 2020. Circular economy and fish waste. Brasilian Journal of Environmental Sciences, v. 55, (4), 525-535. https://doi.org/10.5327/Z2176-947820200677.
Matignon, A.; Tecante, A., 2017. Starch retrogradation: From starch components to cereal products. Food Hydrocolloids, v. 68, 43-52. https://doi.org/10.1016/j.foodhyd.2016.10.032.
Mayanti, B.; Helo, P., 2022. Closed-loop supply chain potential of agricultural plastic waste: Economic and environmental assessment of bale wrap waste recycling in Finland. International Journal of Production Economics, v. 244, 108347. https://doi.org/10.1016/j.ijpe.2021.108347.
Mersoni, C.; Reichert, G.A., 2017. Comparação de cenários de tratamento de resíduos sólidos urbanos por meio da técnica da avaliação do ciclo de vida: o caso do município de Garibaldi, RS. Engenharia Sanitária e Ambiental, v. 22, (5), 863-875. https://doi.org/10.1590/S1413-41522017150351.
Mohebby, N.; Saei, A., 2015. Effects of geographical directions and climatological parameters on natural weathering of fir wood. Construction and Building Materials, v. 94, 684-690. https://doi.org/10.1016/j.conbuildmat.2015.07.049.
Moraes, J.O.; Scheibe, A.S.; Sereno, A.; Laurindo, J.B., 2013. Scale-up of the production of cassava starch based films using tape-casting. Journal of Food Engineering, v. 119, (4), 800-808. https://doi.org/10.1016/j.jfoodeng.2013.07.009.
Moreno, K.G.; Spavento, E.M.; Monteoliva, S.E., 2022. Evolución del color y de la aparición de defectos en la madera de Eucalyptus globulus expuesta a intemperismo natural. Maderas, Ciencia y Tecnologia, v. 24, (26), 1-12. https://doi.org/10.4067/s0718-221x2022000100426.
Olivo, V.D.; Prietto, P.D.M.; Korf, E.P., 2021. Actions and policy tools for local governments to achieve integra-te sustainable waste management. Brazilian Journal of Environmental Sciences, v. 56, (3), 436-444. https://doi.org/10.5327/Z21769478968.
Osés, J.; Niza, S.; Ziani, K.; Mate, J., 2009. Potato starch edible films to control oxidative rancidity of polyunsaturated lipids: effects of film composition, thickness and water activity. International Journal of Food Science and Technology, v. 44, (7), 1360-1366. https://doi.org/10.1111/j.1365-2621.2009.01965.x.
Pereira, T.L.; Carvalho, C.L.; Prado, N.R.T.; Mendes, R.F.; Junior, J.B.G.; Tonoli, G.H.D., 2017. Efeito do intemperismo natural e artificial acelerado nas propriedades físicas, mecânicas e colorimétricas de painéis OSB Effect of natural weathering and accelerated artificial in physical, mechanical and colorimetric OSB panels. Sciencia Florestalis, v. 45, (115), 573-580. https://doi.org/10.18671/scifor.v45n115.14.
Rasmus, S.; Turunen, M.; Luomaranta, A.; Kivinen, S.; Jylhä, K.; Räihä, J., 2020. Climate change and reindeer management in Finland: Co-analysis of practitioner knowledge and meteorological data for better adaptation. Science of the Total Environment, v. 710, 136229. https://doi.org/10.1016/j.scitotenv.2019.136229.
Rivera, J.A.; López, V.P.; Casado, R.R.; Hervás, J.M.S., 2016. Thermal degradation of paper industry wastes from a recovered paper mill using TGA Characterization and gasification test. Waste Management, v. 47, part B, 225-235. https://doi.org/10.1016/j.wasman.2015.04.031.
Rodrigues, T.C.; Tavares, M.I.V.; Pita, V.J.R.R., 2006. Natural weathering evaluation of LDPE-Mango StarchBlends by mechanical properties and high field NMR. Macromolecular Symposia, 245-246, (1), 166-169. https://doi.org/10.1002/masy.200651323.
Rosa, M.F.; Medeiros, E.S.; Imam, S.H.; Mattoso, L.H., 2009. Compósitos biodegradáveis reforçados com fibras de coco imaturo. V Workshop de Rede de Nanotecnologia Aplicada ao Agronegócio (Accessed Feb. 14, 2022) at.: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT-2010/11392/1/AT09007.pdf.
Santos, C.V.; Lourenzani, A.E.B.S.; Neto, M.M.; Lopes, L.A.; Santos, P.S.B., 2021. Study of the biogas potential generated from residue: peanut shells. Brazilian Journal of Environmental Sciences, v. 56, (2), 318-326. https://doi.org/10.5327/Z21769478765.
Sociedade Brasileira de Dermatologia (SBD-RS), 2018. Radiação Solar é mais perigosa no Rio Grande do Sul do que no Nordeste do país durante o verão (Accessed Oct. 20, 2018) at.: http://www.sbdrs.org.br/radiacao-solar-e-mais-perigosa-no-rio-grande-do-sul-do-que-no-nordeste-do-pais-durante-o-verao/.
Tatouchoup, F.D., 2016. Optimal rate of paper recycling. Forest Policy and Economics, Moncton, v. 73, 264-269. https://doi.org/10.1016/j.forpol.2016.09.022.
Teodonio, L.; Missorib, M.; Pawcenisc, D.; Lojewskac, J.; Valled, F., 2016. Nanoscale analysis of degradation processes of cellulose fibers. Micron, v. 91, 75-81. https://doi.org/10.1016/j.micron.2016.07.013.
Tolvaj, L.; Molnar, Z.; Nemeth, R., 2013. Photodegradation of wood at elevated temperature: Infrared spectroscopic study. Journal of Photochemistry and Photobiology B: Biology, v. 121, 32-36. https://doi.org/10.1016/j.jphotobiol.2013.02.007.
Tomacheski, D.; Pittol, M.; Lopes, A.P.M.; Simões, D.N.; Ribeiro, V.F.; Santana, R.M.C., 2018. Effects of weathering on mechanical, antimicrobial properties and biodegradation process of silver loaded TPE compounds. Journal of Polymers and the Environment, v. 26, (1), 73-82. https://doi.org/10.1007/s10924-016-0927-8.
Trinh, H.M.; Militz, H.; Mai, C., 2012. Modification of beech veneers with N-methylol melamine compounds for the production of plywood: natural weathering. European Journal of Wood and Wood Products, v. 70, 279-286. https://doi.org/10.1007/s00107-011-0554-y.
Varsavas, D.; Kaynak, C., 2017. Weathering degradation performance of PLA and its glass fiber reinforced composite. Materials Today Communications, v. 15, 344-353. https://doi.org/10.1016/j.mtcomm.2017.11.008.
Volpe, V.; De Feo, G.; De Marco, I.; Pantini, R., 2018. Use of sunflower seed fried oil as an ecofriendly plasticizer for starch and application of this thermoplastic starch as a filler for PLA. Industrial Crops and Products, v. 122, 545-552. https://doi.org/10.1016/j.indcrop.2018.06.014.
Weather Spark, 2018. Condições meteorológicas médias de Hämeenlinna (Accessed Oct. 8, 2018) at.: https://pt.weatherspark.com/y/91634/Clima-caracter%C3%ADstico-em-H%C3%A4meenlinna-Finl%C3%A2ndia-durante-o-ano.
Xie, Q.; Li, F.; Li, J.; Wanga, L.; Li, Y.; Zhang, C.; Xu, J.; Chen, S., 2018. A new biodegradable sisal fiber–starch packing composite with structure. Carbohydrate Polymers, v. 189, 56-64. https://doi.org/10.1016/j.carbpol.2018.01.063.
Yli-Tuomi, T.; Siponen, T.; Aurela, M.; Teinilä, K.; Hillamo, R.; Pekkanen, J.; Salonen, R.O.; Lanki, T., 2015. Impact of wood combustion for secondary heating and recreational purposes on particulate air pollution in a suburb in Finland. Environmental Science & Technology, v. 49, (7), 4089-4096. https://doi.org/10.1021/es5053683.
Zain, A.H.M.; Wahab, M.K.A.; Ismail, H., 2018. Solid-state photo-cross-linking of cassava starch: improvement properties of thermoplastic starch. Polymer Bulletin, v. 75, (8), 3341-3356. https://doi.org/10.1007/s00289-017-2209-6.
Zervos, S., 2010. Natural and accelerated ageing of cellulose and paper: a literature review. In: Lejeune, A., Deprez, T., eds. Cellulose: Structure and properties, derivatives and industrial uses. West Attica: Nova Publishing, pp. 155-203.
Zhong, F.; Lia, Y.; Ibanéz, A.M.; Oh, M.H.; Mckenzied, K.S., Shoemakerb, C., 2009. The effect of rice variety and starch isolation method on the pasting and rheological properties of rice. Food Hydrocolloids, v. 23, (2), 406-414. https://doi.org/10.1016/j.foodhyd.2008.02.003.
Zupanc, M.Z.; Lesar, B.; Humar, M., 2018. Changes in moisture performance of wood after weathering. Construction and Building Materials, v. 193, 529-538. https://doi.org/10.1016/j.conbuildmat.2018.10.196.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.