Use of Myriophyllum aquaticum to inhibit Microcystis aeruginosa growth and remove microcystin-LR
DOI:
https://doi.org/10.5327/Z2176-94781309Keywords:
allelopathy; cyanobacteria; cyanotoxins; submerged aquatic macrophytes; nature-based solutions.Abstract
Harmful algal blooms are one of the greatest challenges when preserving water sources, especially when involving cyanobacteria such as Microcystis aeruginosa. Finding remediation possibilities is needed, and one of them has been the use of macrophytes such as the species Myriophyllum, which have presented allelopathic mechanisms of phytoplankton control. Thus, this work aimed to evaluate the inhibition of M. aeruginosa cell growth in a co-exposure with Myriophyllum aquaticum and the influence on microcystin-LR concentration. The experiments were carried out using a culture of M. aeruginosa (1x106 cells mL-1) in a co-exposure with M. aquaticum for seven days. The inhibitory effects were investigated by counting the cells; the effects on photosynthetic pigments were measured and microcystin-LR was quantified in the culture medium on the last experimental day. To evaluate the possible effects of competition for nutrients and space, the concentration of total orthophosphate was quantified and treatment with plastic plants was used. The experiments with Myriophyllum aquaticum achieved the total inhibition of M. aeruginosa growth and a significant reduction of the photosynthetic pigments (> 98%). Additionally, we observed a reduction of microcystin-LR concentration (79%) in the tests with macrophytes when compared to the control. Competition for space and nutrients was not observed, demonstrating that the effects on M. aeruginosa were caused by aquatic macrophyte presence. These results may indicate that M. aquaticum causes inhibitory effects on cyanobacteria growth by allelopathic effects and removes microcystin-LR.
Downloads
References
Almeida, A.R.D.; Passig, F.H.; Pagioro, T.A.; Nascimento, P.T.H.D.; Carvalho, K.Q.D., 2016. Remoção de microcistina-LR da Microcystis aeruginosa utilizando bagaço de cana-de-açúcar in natura e carvão ativado. Revista Ambiente & Água, v. 11(1), 188-197. https://doi.org/10.4136/ambi-agua.1785.
Calado, S.L.M.; Esterhuizen-Londt, M.; Silva de Assis, H.C.; Pflugmacher, S., 2019. Phytoremediation: green technology for the removal of mixed contaminants of a water supply reservoir. International Journal of Phytoremediation, v. 21, (4), 372-379. http://doi.org/10.1080/15226514.2018.1524843.
Chapman, D.J.; Kremer, B.P. 1988. Experimental phycology: a laboratory manual. Cambridge: Cambridge University Press, 308 pp.
Chen, J.Q.; Guo, R.X., 2014. Inhibition effect of green alga on cyanobacteria by the interspecies interactions. International Journal of Environmental Science and Technology, v. 11, (3), 839-842. https://doi.org/10.1007/s13762-013-0208-1.
Cheng, W.; Xuexiu, C.; Hongjuan, D.; Difu, L.; Junyan, L., 2008. Allelopathic inhibitory effect of Myriophyllum aquaticum (Vell.) Verdc. on Microcystis aeruginosa and its physiological mechanism. Acta Ecologica Sinica, v. 28, (6), 2595-2603. https://doi.org/10.1016/S1872-2032(08)60061-X.
Ferreira, T.F.; Crossetti, L.O.; Marques, D.M.M.; Cardoso, L.; Fragoso Jr., C.R.; van Nes, E.H., 2018. The structuring role of submerged macrophytes in a large subtropical shallow lake: Clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica, v. 69, 142-154. https://doi.org/10.1016/j.limno.2017.12.003.
Gorham, P.R.; McLachlav, J.R.; Hammer, V.T.; Kim, W.K., 1964. Isolation culture of toxic strains of Anabaena flos-aquae (Lyngb.) Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen. v. 15, (2), 796-804. https://doi.org/10.1080/03680770.1962.11895606.
Gross, E.M. 2003. Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos, v. 103, (3), 497-504. https://doi.org/10.1034/j.1600-0706.2003.12666.x.
Gross, E.M.; Meyer, H.; Schilling, G., 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry, v. 41, (1), 133-138. https://doi.org/10.1016/0031-9422(95)00598-6.
Huang, S.; Zhu, J.; Zhang, L.; Peng, X.; Zhang, X.; Ge, F.; Liu, B.; Wu, Z., 2020. Combined Effects of Allelopathic Polyphenols on Microcystis aeruginosa and Response of Different Chlorophyll Fluorescence Parameters. Frontiers in Microbiology, v. 11, 614570. https://doi.org/10.3389%2Ffmicb.2020.614570.
Kakade, A.; Salama, E.S.; Han, H.; Zheng, Y.; Kulshrestha, S.; Jalalah, M.; Harraz, F.A.; Alsareii, S.A.; Li, X., 2021. World eutrophic pollution of lake and river: Biotreatment potential and future perspectives. Environmental Technology & Innovation, v. 23, 101604. https://doi.org/10.1016/j.eti.2021.101604.
Kitamura, R.S.A.; Silva, A.R.; Pagioro, T.A.; Martins, L.R.R., 2021. Bioatividade alelopática de extratos metanólicos de Myriophyllum aquaticum (Vell.) Verdc. sobre Microcystis aeruginosa. Enciclopédia Biosfera, v. 18, (37), 116-128. https://doi.org/10.18677/EnciBio_2021C10.
Kudela, R.M.; Palacios, S.L.; Austerberry, D.C.; Accorsi, E.K.; Guild, L.S.; Torres-Perez, J., 2015. Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sensing of Environment, v. 167, 196-205. https://doi.org/10.1016/j.rse.2015.01.025.
Leu, E.; Krieger-Liszkay, A.; Goussias, C.; Gross, E.M., 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology, v. 130, (4), 2011-2018. https://doi.org/10.1104/pp.011593.
Li, B.; Yin, Y.; Kang, L.; Feng, L.; Liu, Y.; Du, Z.; Tian, Y.; Zhang, L. 2021. A review: Application of allelochemicals in water ecological restoration – algal inhibition. Chemosphere, v. 267, 128869. https://doi.org/10.1016/j.chemosphere.2020.128869.
Li, J.; Liu, Y.; Zhang, P.; Zeng, G.; Cai, X.; Liu, S.; Yin, Y.; Hu, X; Tan, X., 2016. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. Journal of Environmental Sciences, v. 43, 40-47. https://doi.org/10.1016/j.jes.2015.08.020.
Lichtenthaler, H.K.; Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, v. 11, (5), 591-592. https://doi.org/10.1042/bst0110591.
Lu, Z.; Sha, J.; Tian, Y.; Zhang, X.; Liu, B.; Wu, Z., 2017. Polyphenolic allelochemical pyrogallic acid induces caspase-3 (like)-dependent programmed cell death in the cyanobacterium Microcystis aeruginosa. Algal Research, v. 21, 148-155. https://doi.org/10.1016/j.algal.2016.11.007.
McColl, R., 2018. Phycobiliproteins. California: CRC Press, 224 p.
Meng, P.; Pei, H.; Hu, W.; Liu, Z.; Li, X.; Xu, H., 2015. Allelopathic effects of Alianthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release. Chemosphere, v. 141, 219-226. https://doi.org/10.1016/j.chemosphere.2015.07.057.
Mohamed, Z.A., 2017. Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management: a review. Limnologica, v. 63, 122-132. https://doi.org/10.1016/j.limno.2017.02.006.
Munoz, M.; Cirés, S.; Pedro, Z.M.; Colina, J.Á.; Velásquez-Figueroa, Y.; Carmona-Jiménez, J.; Caro-Borrero, A.; Salazar, A.; Fuster, M.S.M.; Contreras, D.; Perona, E.; Quesada, A.; Casas, J.A., 2021. Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: challenges for risk management and opportunities for removal by advanced technologies. Science of the Total Environment, v. 761, 143197. https://doi.org/10.1016/j.scitotenv.2020.143197.
Nakai, S.; Zou, G.; Okuda, T.; Nishijima, W.; Hosomi, M.; Okada, M., 2012. Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum. Water Science and Technology, v. 66, (5), 993-999. https://doi.org/10.2166/wst.2012.272.
Pflugmacher, S.; Kühn, S.; Lee, S.H.; Choi, J.W.; Baik, S.; Kwon, K.S.; Contardo-Jara, V., 2015. Green Liver Systems® for water purification: using the phytoremediation potential of aquatic macrophytes for the removal of different cyanobacterial toxins from water. American Journal of Plant Sciences, v. 6, (9), 1607-1618. https://doi.org/10.4236/ajps.2015.69161.
Qian, Y.; Xu, N.; Liu, J.; Tian, R., 2018. Inhibitory effects of Pontederia cordata on the growth of Microcystis aeruginosa. Water Science and Technology, v. 2017, (1), 99-107. https://doi.org/10.2166/wst.2018.090.
Ramya, M.; Umamaheswari, A.; Elumalai, S., 2020. Global health concern of cyanotoxins in surface water and its various detection methods. Current Botany, v. 11, 65-74. https://doi.org/10.25081/cb.2020.v11.6059.
Tanvir, R.U.; Hu, Z.; Zhang, Y.; Lu, J., 2021. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environmental Pollution, v. 290, 118056. https://doi.org/10.1016/j.envpol.2021.118056
Tazart, Z.; Caldeira, A.T.; Douma, M.; Salvador, C.; Loudiki, M., 2021. Inhibitory effect and mechanism of three macrophytes extract on Microcystis aeruginosa growth and physiology. Water and Environment Journal, v. 35, (2), 580-592. https://doi.org/10.1111/wej.12653.
Torres, M.A.; Micheletto, J.; Liz, M.V.; Pagioro, T.A.; Martins, L.R.R.; Freitas, A.M. 2020. Microcystis aeruginosa inactivation and microcystin-LR degradation by the photo-Fenton process at the initial near-neutral pH. Photochemical & Photobiological Sciences, v. 19, (10), 1470-1477. https://doi.org/10.1039/d0pp00177e.
Touzet, N.; McCarthy, D.; Gill, A.; Fleming, G.T.A., 2016. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland. Science of the Total Environment, v. 553, 416-428. https://doi.org/10.1016/j.scitotenv.2016.02.117.
Valderrama, J.C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, v. 10, (2), 109-122. https://doi.org/10.1016/0304-4203(81)90027-X.
Wang, H.; Liu, F.; Luo, P.; Li, Z.; Zheng, L.; Wang, H.; Zou, D.; Wu, J., 2017a. Allelopathic effects of Myriophyllum aquaticum on two cyanobacteria of Anabaena flos-aquae and Microcystis aeruginosa. Bulletin of environmental contamination and toxicology, v. 98, (4), 556-561. https://doi.org/10.1007/s00128-017-2034-5.
Wang, H.Q.; Zhang, L.Y.; Fang, X.M.; Zhang, A.N. 2017b. Modified water treatment residual as flocculant for Microcystis aeruginosa removal and water purification. International Journal of Environmental Science and Technology, v. 14 (11), 2543-2550. https://doi.org/10.1007/s13762-017-1381-4.
Zohdi, E.; Abbaspour, M., 2019. Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction. International Journal of Environmental Science and Technology, v. 16, (3), 1789-1806. https://doi.org/10.1007/s13762-018-2108-x.
Zhu, J.; Liu, B.; Wang, J.; Gao, Y.; Wu, Z., 2010. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquatic Toxicology, v. 98, (2), 196-203. https://doi.org/10.1016/j.aquatox.2010.02.011.
Zhu, X.; Dao, G.; Tao, Y.; Zhan, X.; Hu, H., 2021. A review on control of harmful algal blooms by plant-derived allelochemicals. Journal of Hazardous Materials, v. 401, 123403. https://doi.org/10.1016/j.jhazmat.2020.123403.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.