Water quality modeling in the Paraibuna River in Juiz de Fora/MG: diagnosis and prognosis
DOI:
https://doi.org/10.5327/Z2176-94781288Keywords:
Water Pollution. Self-Purification. QUAL2K.Abstract
Para fundamentar a implementação de instrumentos da Política Nacional de Recursos Hídricos, bem como o novo marco legal do saneamento básico, a avaliação ambiental dos cursos d’água torna-se importante para nortear o planejamento, monitoramento e gestão de uma bacia hidrográfica. Assim, esta pesquisa objetivou contribuir para a construção de estruturas de informações sobre o Rio Paraibuna e sua bacia hidrográfica na região central e mais urbanizada de Juiz de Fora, Minas Gerais. Foi utilizado o modelo matemático QUAL2K, considerando-se dois períodos hidrológicos distintos. No estudo foram levados em conta dados de qualidade da água para as variáveis oxigênio dissolvido, demanda bioquímica de oxigênio, temperatura, condutividade elétrica e pH. Foram quantificadas as vazões no Rio Paraibuna e nos seus tributários com o uso do ADCP (Acoustic Doppler Current Profile) e do molinete hidrométrico. Com o modelo calibrado, foram simulados cenários futuros de qualidade de água quando as novas estações de tratamento de esgoto estiverem operando com capacidade máxima, conforme o Plano Municipal de Saneamento Básico de Juiz de Fora. Os resultados mostraram que o Rio Paraibuna, no trecho central de Juiz de Fora, apresentou dados de qualidade de água com qualidade reduzida, principalmente no período seco, e conclui-se que a vazão tem influência direta nessa qualidade. Quanto aos cenários simulados, depreende-se que o melhor resultado obtido, para o tratamento de esgoto do Rio Paraibuna, será alcançado quando aplicadas as condições de tratamento apresentadas no cenário 3. Esse cenário contempla as ETE União Indústria, Santa Luzia e a reforma da ETE Barbosa Laje, com redução esperada de 90% da carga poluidora nos córregos contemplados no presente trabalho e redução de 50% da carga orgânica a montante do trecho estudado.
Downloads
References
Abdeveis, S.; Sedghi, H.; Hassonizadeh, H.; Babazadez, H., 2020. Application of water quality index and water quality model QUAL2K for evaluation of pollutants in Dez River, Iran. Water Resources, v. 47, 892-903. https://doi.org/10.1134/s0097807820050188.
Abreu, C.H.M.; Cunha, A.C., 2017. Qualidade da água e índice trófico em rio de ecossistema tropical sob impacto ambiental. Engenharia Sanitária e Ambiental, v. 22, (1), 45-56. https://doi.org/10.1590/s1413-41522016144803.
Almeida, R.M.; Paranaíba, J.R.; Barbosa, I.; Sobek, S., 2019. Carbon dioxide emission from drawdown areas of a Brazilian reservoir is linked to surrounding land cover. Aquatic Sciences, v. 81, 68. https://doi.org/10.1007/s00027-019-0665-9.
Alvarenga, L.A.; Martins, M.P.P.; Cuartas, L.A.; Penteado, V.A.; Andrade, A., 2012. Estudo da qualidade e quantidade da água em microbacia, afluente do rio Paraíba do Sul – São Paulo, após ações de preservação ambiental. Revista Ambiente e Água, v. 7, (3), 228-240. https://doi.org/10.4136/ambi-agua.987.
American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF), 2005. Standard methods for the examination of water and wastewater. 21th ed. APHA, Washington, D.C.
Andrade, M.P.D.; Ribeiro, C.B.D.M., 2020. Impacts of land use and cover change on Paraíba do Sul whatershed streamflow using the SWAT model. Brazilian Journal of Water Resources, v. 25, e12. https://doi.org/10.1590/2318-0331.252020190034.
Antunes, I.M.H.R.; Albuquerque, M.T.D.; Oliveira, S.F.; Sánz, G., 2018. Predictive scenarios for surface water quality simulation – A watershed case study. Catena, v. 170, 283-289. https://doi.org/10.1016/j.catena.2018.06.021.
Bai, J.; Zhao, J.; Zhang, Z.; Tian, Z., 2022. Assessment and a review of research on surface water quality modeling. Ecological Modelling, v. 466, 109888. https://doi.org/10.1016/j.ecolmodel.2022.109888.
Barros, F.M.; Martinez, M.A.; Matos, A.T.; Cecon, P.R.; Moreira, D.A., 2011. Balanço de oxigênio no rio Turvo Tujo-MG em diferentes épocas do ano. Revista Engenharia Agrícola, v. 19, (1), 72-80. https://doi.org/10.13083/reveng.v19i1.278.
Bisimwa, A.M.; Amisi, F.M.; Bamawa, C.M.; Muhaya, B.B.; Kankonda, A.B., 2022. Water quality assessment and pollution source analysis in Bukavu urban rivers of the Lake Kivu basin (Eastern Democratic Republic of Congo). Environmental and Sustainability Indicators, v. 14, 100183. https://doi.org/10.1016/j.indic.2022.100183.
Bottino, F.; Ferraz, I.C.; Mendiondo, E.M.; Calijuri, M. do C., 2010. Calibration of QUAL2K model in Brazilian micro watershed: effects of the land use on water quality. Acta Limnologica Brasiliensia, v. 22, (4), 474-485. https://doi.org/10.4322/actalb.2011.011.
Brasil, 1997. Lei nº 9.433, de 8 de janeiro de 1997. Diário Oficial da União, Brasília.
Brasil, 2005. Conselho Nacional do Meio Ambiente – CONAMA. Resolução CONAMA nº 357, de 17 de março de 2005. Diário Oficial da União, Brasília.
Brasil, 2020a. Lei nº 14.026, de 15 de julho de 2020. Diário Oficial da União, Brasília.
Brasil, 2020b. Ministério das Cidades. Secretaria Nacional de Saneamento Ambiental – SNSA. 2020b. Sistema Nacional de Informações sobre Saneamento: Diagnóstico dos Serviços de Água e Esgotos – 2019. SNSA/MCIDADES, Brasília.
Camargo, R.D.A.; Calijuri, M.L.; Santiago, A.D.F.; Couto, E.D.A.; Silva, M.D.F.M., 2010. Water quality prediction using the QUAL2Kw model in a small karstic watershed in Brazil. Acta Limnologica Brasiliensia, n. 22, (4), 486-498. https://doi.org/10.4322/actalb.2011.012.
Chapra, S.C.; Pelletier, G.; Tao, H., 2012. QUAL2K: A modeling framework for simulating river and stream water quality. Documentation and User’s Manual. Civil and Environmental Engineering Department, Tufs University, Medford, v. 2.
Che, L.; Jin, W.; Zhou, X.; Cao, C.; Han, W.; Qin, C.; Tu, R.; Chen, Y.; Feng, X.; Wang, Q., 2020. Biological reduction of organic matter in Buji River sediment (Shenzhen, China) with artificial oxygenation. Water, v. 12, (12), 3592. https://doi.org/10.3390/w12123592.
Cunha, C.D.L.D.N.; Ferreira, A.P., 2019. Análise crítica por comparação entre modelos de qualidade de água aplicados em rios poluídos: contribuições à saúde, água e saneamento. Engenharia Sanitária e Ambiental, v. 24, (3), 473-480. https://doi.org/10.1590/s1413-41522019112332.
Dias, R.J.P.; Souza, P.M.; Rossi, M.F.; Wieloch, A.H.; Silva Neto, I.D.; D’Agosto, M., 2021. Ciliates as bioindicators of water quality: A case study in the neotropical region and evidence of phylogenetic signals (18S-rDNA). Environmental Pollution, v. 268, (part A), 115760. https://doi.org/10.1016/j.envpol.2020.115760.
Ferreira, D.C.; Graziele, I.; Marques, R.C.; Gonçalves, J., 2021. Investment in drinking water and sanitation infrastructure and its impact on waterborne diseases dissemination: The Brazilian case. Science of the Total Environment, v. 779, 146279. http://doi.org/10.1016/j.scitotenv.2021.146279.
Fia, R.; Tadeu, H.C.; Menezes, J.P.C.D.; Fia, F.R.L.; Oliveira, L.F.C.D., 2015. Qualidade da água de um ecossistema lótico urbano. Revista Brasileira de Recursos Hídricos, v. 20, (1), 267-275. https://doi.org/10.21168/rbrh.v20n1.p267-275.
Fraga, M.S.; Reis, G.B.; Silva, D.D.; Moreira, M.C.; Borges, A.C.; Guedes, H.A.S., 2020. Modelagem sazonal da qualidade da água do rio Piracicaba para o cenário atual e futuro. Revista Ibero Americana de Ciências Ambientais, v. 11, (2), 145-160. https://doi.org/10.6008/CBPC2179-6858.2020.002.0017.
Fritzsons, E.; Hindi, E.C.; Mantovani, L.E.; Rizzi, N.E., 2003. As alterações da qualidade da água do rio Capivari com o deflúvio: um instrumento de diagnóstico de qualidade ambiental. Engenharia Sanitária e Ambiental, v. 8, (4), 239-248.
Fu, B.; Horsburgh, J.S.; Jakeman, A.J.; Gualtieri, C.; Arnold, T.; Marshall, L.; Green, T.R.; Quinn, N.W.T.; Volk, M.; Hunt, R.J.; Vezzaro, L.; Croke, B.F.W.; Jakeman, J.D.; Snow, V.; Rashleigh, B., 2020. Modeling water quality in watersheds: From here to the next generation. Water Resources Research, v. 56, (11), e2020WR027721. https://doi.org/10.1029/2020WR027721.
Giri, A.; Bharti, V.K.; Kalia, S.; Arora, A.; Balaje, S.S.; Chaurasia, O.P., 2020. A review on water quality and dairy cattle health: a special emphasis on high‑altitude region. Applied Water Science, v. 10, 79. https://doi.org/10.1007/s13201-020-1160-0.
Guedes, H.A.S.; Silva, D.D.D.S.; Elesbon, A.A.A.; Ribeiro, C.B.M.; Matos, A.T.D.; Soares, J.H.P., 2012. Aplicação da análise estatística multivariada no estudo da qualidade da água do Rio Pomba, MG. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 16, (5), 558-563. https://doi.org/10.1590/S1415-43662012000500012.
Haider, H.; Al, W., 2013. Review of dissolved oxygen and biochemical oxygen demand models for large rivers. Pakistan Journal of Engineering and Applied Science, v. 12, (1), 127-142.
Helena, B.; Pardo, R.; Barado, M. V. E.; Fernandez, M.; Fernandez, L., 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, v. 34, (3), 807-816. https://doi.org/10.1016/S0043-1354(99)00225-0.
Hossain, M.A.; Sujaul, I.M.; Nasly, M.A., 2014. Application of QUAL2Kw for water quality modeling in the Tunggak River, Kuantan, Pahang, Malaysia. Research Journal of Recent Sciences, v. 3, (6), 6-14.
Instituto Brasileiro de Geografia e Estatística (IBGE). 2010. Censo Demográfico. Brasília (Accessed July 2, 2019) at:. https://censo2010.ibge.gov.br/.
Macedo, L.D.B.; Cavazzana, G.H.; Pereira, M.A.DS.; Garayo Junior, F. H.; Magalhães Filho, F.J.C., 2018. Water quality modeling: a Brazilian experience in water resource management for decision making in wastewater treatment plants. International Journal of Current Research, v. 10, (9), 73675-73681. https://doi.org/10.24941/ijcr.32368.09.2018.
Marques, J.A.V.; Figueroa, F.E.V.; Queiroz, S.C.C.; Catalunha, M.J., 2019. Estudo comparativo dos custos com produtos químicos para produção de água a partir de dois mananciais. O caso da cidade de Palmas/TO, Brasil. Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, Desarrolho y Practica, v. 12, (1), 81-92. https://doi.org/10.22201/iingen.0718378xe.2019.12.1.59484.
Menezes, J.P.C.D.; Bittencourt, R.P.; Farias, M.D.S.; Bello, I.P.; Oliveira, L.F.C.D.; Fia, R., 2015. Deoxygenation rate, reaeration and potential for self-purification of a small tropical urban stream. Revista Ambiente e Água, v. 10, (4), 748-757. https://doi.org/10.4136/ambi-agua.1599.
Minas Gerais, 2008. Conselho de Política Ambiental (COPAM). Conselho Estadual de Recursos Hídricos (CERH). Deliberação Normativa Conjunta COPAM/CERH-MG nº 1, de 5 de maio de 2008. Diário do Executivo de Minas Gerais, Belo Horizonte.
Morais, C.P.; Tadini, A.M.; Bento, L.R.; Oursel, B.; Guimaraes, F.E.G.; Martin Neto, L.; Mounier, S.; Milori, D.M.B.P., 2021. Assessing extracted organic matter quality from river sediments by elemental and molecular characterization: Application to the Tietê and Piracicaba Rivers (São Paulo, Brazil). Applied Geochemistry, v. 131, 105049. https://doi.org/10.1016/j.apgeochem.2021.105049.
Mulvaney, K.K.; Nathaniel, H.M.; Mazzotta, M.J., 2020. Sense of place and water quality: Applying sense of place metrics to better understand community impacts of changes in water quality. In: Summers, K. (Ed.), Water quality: science, assessments and policy. IntechOpen, Londres. https://doi.org/10.5772/intechopen.91480.
Okorogbona, I.O.M.; Denner, F.D.N.; Managa, L.R.; Khosa, T.B.; Maduwa, K.; Adebola, P.O.; Amoo, S.O.; Ngobeni, H.M.; Macevele, S., 2018. Water quality impacts on agricultural productivity and environment. Sustainable Agriculture Reviews, v. 27, 1-35. https://doi.org/10.1007/978-3-319-75190-0_1.
Paiva, R.F.D.P.D.S.; Souza, M.F.D.P.D., 2018. Associação entre condições socioeconômicas, sanitárias e de atenção básica e a morbidade hospitalar por doenças de veiculação hídrica no Brasil. Cadernos de Saúde Pública, v. 34, (1), e00017316. https://doi.org/10.1590/0102-311X00017316.
Paranaíba, J.R.; Barros, N.; Almeida, R.M.; Linkhorst, A.; Mendonça, R.; Vale, R.D.; Roland, F.; Sobek, S., 2021. Hotspots of diffusive CO2 and CH4 emission from tropical reservoirs shift through time. Journal of Geophysical Research: Biogeosciences, v. 126, (4), e2020JG006014. https://doi.org/10.1029/2020JG006014.
Patil, R.; Wei, Y.; Pullar, D.; Shulmeister, J., 2022. Effects of change in streamflow patterns on water quality. Journal of Environmental Management, v. 302, (part A), 113991. https://doi.org/10.1016/j.jenvman.2021.113991.
Piratoba, A.R.A.; Ribeiro, H.M.C.; Morales, G.P.; Gonçalves, W.G.E., 2017. Caracterização de parâmetros de qualidade da água na área portuária de Barcarena, PA, Brasil. Revista Ambiente e Água, v. 12, (3), 435-456. https://doi.org/10.4136/ambi-agua.1910.
Prefeitura de Juiz de Fora (PMJF), 2013. Plano de saneamento básico do município de Juiz de Fora. Produto 8, Documento Final. Juiz de Fora, 180 pp. (Accessed July 4, 2019) at:. https://planodesaneamento.pjf.mg.gov.br/o_plano.html.
Quadra, G.R.; Li, Z.; Silva, P.S.A.; Barros, N.; Roland, F.; Sobek, A., 2021. Temporal and spatial variability of micropollutants in a Brazilian urban river. Archives of Environmental Contamination and Toxicology, v. 81, 142-154. https://doi.org/10.1007/s00244-021-00853-z.
Soares, L.M.V.; Calijuri, M.C., 2021. Sensitivity and identifiability analyses of parameters for water quality modeling of subtropical reservoirs. Ecological Modelling, v. 458, 109720. https://doi.org/10.1016/j.ecolmodel.2021.109720.
Tonhá, M.S.; Araújo, D.F.; Araújo, R.; Cunha, B.C.A.; Machado, W.; Portela, J.F.; Souza, J.P.R.; Carvalho, H.K.; Dantas, E.L.; Roig, H.L.; Seyler, P.; Garnier, J., 2021. Trace metal dynamics in an industrialized Brazilian river: A combined application of Zn isotopes, geochemical partitioning, and multivariate statistics. Journal of Environmental Sciences, v. 101, 313-325. https://doi.org/10.1016/j.jes.2020.08.027.
Von Sperling, M., 2014. Estudos e modelagem da qualidade da água de rios. 2. ed. Departamento de Engenharia Sanitária e Ambiental (DESA/UFMG), Belo Horizonte, 588 pp.
Waqas, S.; Bilad, M.R.; Man, Z.; Wibisono, Y.; Jaafar, J.; Mahlia, T.M.I.; Khan, A.L.; Aslam, M., 2020. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. Journal of Environmental Management, v. 268, 110718. https://doi.org/10.1016/j.jenvman.2020.110718.
Zhang, X.; Zhang, D.; Ding, Y., 2021. An environmental flow method applied in small and medium-sized mountainous rivers. Water Science and Engineering, v. 14, (4), 323-329. https://doi.org/10.1016/j.wse.2021.10.003.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.