Growth and tolerance of Ilex paraguariensis A. St.-Hil. inoculated with ectomycorrhizal fungi in copper-contaminated soil

Authors

DOI:

https://doi.org/10.5327/Z2176-94781236

Keywords:

yerba mate; symbiose; heavy metal; soil contamination.

Abstract

Copper (Cu) is one of the main heavy metals contaminating the soil. Plants have different behavior in terms of tolerance and toxicity to metals, being able to grow and produce even in soils contaminated with high concentrations. This study aimed to determine the influence of ectomycorrhizal fungi on the growth and tolerance of yerba mate plants grown in soil contaminated with Cu. The design was completely randomized in a factorial arrangement (4x6), with four possibilities of inoculum: without inoculum (control) and three ectomycorrhizal fungi (UFSC-PT116 — Pisolithus microcarpus, UFSC-PT132 — Pisolithus tinctorius and UFSC-SU118 — Suillus cothurnatus), with six Cu doses amended to the soil (0, 80, 160, 240, 320 and 400 mg kg-1 of Cu) in seven replicates. The height of the aerial part, the diameter of the lap, the dry mass of the aerial part and root system, the leaf area, the specific surface area of the roots, the contents of Cu in the aerial and radicular parts, the tolerance index, and mycorrhizal association were assessed. Inoculation of Ilex paraguariensis seedlings with ectomycorrhiza fungi UFSC-PT116, UFSC-PT132, and UFSC-SU118 mitigates the toxicity effect caused by the excess of Cu in the soil. The UFSC-PT116 isolate promoted the highest growth and tolerance of Ilex paraguariensis seedlings under the treatments. In general, the isolates promoted the reduction of Cu toxicity in Ilex paraguariensis plants, being an important alternative to remediate Cu-contaminated areas.

Downloads

Download data is not yet available.

References

Afonso, T.F.; Demarco, C.F.; Pieniz, S.; Quadro, M.S.; Camargo, F.A.O.; Andreazza, R., 2022. Analysis of Baccharis dracunculifolia and Baccharis trimera for phytoremediation of heavy metals in copper mining tailings area in southern brazil. applied biochemistry and biotechnology, v. 194, 694-708. https://doi.org/10.1007/s12010-021-03652-3.

Ali, H.; Khan, E.; Anwar, M., 2013. Chemosphere phytoremediation of heavy metals – concepts and applications. Chemosphere, v. 91, (7), 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075.

Ambrosini, V.G.; Rosa, D.J.; Prado, J.P.C.; Borghezan, M.; Melo, G.W.B.; Soares, C.R.F.S.; Comin, J.J.; Simão, D.G.; Brunetto, G., 2015. Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiology and Biochemistry, 96, 270-280. https://doi.org/10.1016/j.plaphy.2015.08.012.

Bertolazzi, A.A.; Canton, G.C.; Azevedo, I.G.; Cruz, Z.M.A.; Soares, D.N.E.S.; Conceição, J.M.; Santos, W.O.; Ramos, A.C., 2010. O papel das ectomicorrizas na biorremediação de metais pesados no solo. Natureza Online, v. 8, (1), 24-31.

Brasil. Conselho Nacional do Meio Ambiente (Conama), 2009. Resolução nº 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, Seção 1, 20 p.

Brundrett, M. C. Mycorrhizal associations: the web resource. 2008 (Accessed Feb 20, 2019) at:. mycorrhizas.info.

Cambrollé, J.; Mancilla-Leytón, J.M.; Muñoz-Vallés, S.; Luque, T., Figueroa, M.E., 2012. Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere, 86, (9), 867-874. https://doi.org/10.1016/j.chemosphere.2011.10.039.

Cassanego, M.B.; Goldoni, A.; Heldt, F.H.; Migliavacca, D.M.; Windisch, O.P.G.; Droste, A., 2013. Germination and sporophytic development of Regnellidium diphyllum Lindm. (Marsileaceae) in the presence of copper. Acta Botanica Brasilica, v. 27, (1), 26-30. https://doi.org/10.1590/S0102-33062013000100004.

Chaves, L.H.G.; Mesquita, E.F.; Araujo, D.L.; França, C.P., 2010. Crescimento, distribuição e acúmulo de cobre e zinco em plantas de pinhão-manso. Ciência Agronômica, v. 41, (2), 167-176. https://doi.org/10.1590/S1806-66902010000200001.

De Marco, R.; Silva, R.F.; Ros, C.O.; Vanzam, M.; Boeno, D., 2017. Senna multijuga and peat in phytostabilization of copper in contaminated soil. Revista Brasileira de Engenharia Agrícola e Ambiente, v. 21, (6), 421-426. https://doi.org/10.1590/1807-1929/agriambi.v21n6p421-426.

Dellai, A.; Silva, R.F.; Andreazza, R., 2018. Ectomicorriza no crescimento de Eucalyptus salignaem solo contaminado com cobre. Ciência Florestal, v. 28, (2), 624-631. https://doi.org/10.5902/1980509832052.

Dellai, A.; Silva, R.F.; Perrando, E.R.; Jacques, R.J.S.; Grolli, A.L.; Marco, R.D., 2014. Óleo de eucalipto e Pisolithusmicrocarpus no crescimento de bracatinga em solo contaminado por cobre. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, (9), 927-933. https://doi.org/10.1590/1807-1929/agriambi.v18n09p927-933.

Ferreira, D.F., 2011. Sisvar: sistema de análise de variância. Versão 5.3. UFLA, Lavras.

Fogarty, V.; Tobin, M., 1996. Fungal melanins and their interactions with metals. Enzyme and Microbial Technology, v.19, (4),311-317. https://doi.org/10.1016/0141-0229(96)00002-6.

Fundação Estadual de Meio Ambiente do Rio Grande do Sul (FEPAM), 2014. Portaria nº 85/2014. Dispõe sobre o estabelecimento de Valores de Referência de Qualidade (VQR) dos solos para nove elementos químicos naturalmente presentes nas diferentes províncias geomorfológicas/geológicas do estado do Rio Grande do Sul. FEPAM, Rio Grande do Sul.

Gadd, G.M., 1993. Interactions of fungi with toxic metals. New Phytologist, v. 124, (1), 25-60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x

Gautam, S.; Anjani, K.; Srivastava, N., 2016. In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiology and Molecular Biology of Plants, v. 22, (1), 121-129. https://doi.org/10.1007/s12298-016-0339-1.

Giovannetti, M.; Mosse, B., 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, v. 84, (3), 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x.

Grassi Filho, H., 2005. Cobre na planta. Universidade Estadual Paulista “Júlio de Mesquita Filho”, Faculdade de Ciências Agronômicas, Departamento de Recursos Naturais, Ciência do Solo.

Guimarães, P.R.; Ambrosini, V.G.; Miotto, A.; Ceretta, C.A.; Simão, D.G.; Brunetto, G., 2016. Black Oat (Avena strigosa Schreb.) Growth and root anatomical changes in sandy soil with different copper and phosphorus concentrations. Water Air and Soil Pollution, v. 227, 192-201. https://doi.org/10.1007/s11270-016-2900-5.

Harley, J.L., 1969. The biology of mycorrhiza. Leonard Hill, London, 230 pp.

Jacques, R.A.; Freitas, L.S.; Péres, V.F.; Caramão, E.B., 2007. The use of ultrasound in the extraction of Ilex paraguariensis leaves: A comparison with maceration. Ultrasonics Sonochemistry, v. 14, (1), 6-12. https://doi.org/10.1016/j.ultsonch.2005.11.007.

Jorge, L.A.C.; Silva, D.J.C.B., 2010. Safira: manual de utilização. Embrapa Instrumentação Agropecuária, São Carlos.

Kabata-Pendias, A., 2011. Trace elements in soils and plants. 4. ed. CRC Press, Boca Raton.

Lequeux, H.; Hermans, C.; Lutts, S.; Verbruggen, N., 2010. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, v. 48, (8), 673-682. https://doi.org/10.1016/j.plaphy.2010.05.005.

Lorenzi, H., 2009. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum, Nova Odessa, v. 3.

Marastoni, L.; Sandri, M.; Pii, Y.; Valentinuzzi, F.; Brunetto, G.; Cesco, S.; Mimmo T., 2019. Synergism and antagonisms between nutrients induced by copper toxicity in grape vine root stocks: Monocropping vs. intercropping. Chemosphere, v. 214, 563-578. https://doi.org/10.1016/j.chemosphere.2018.09.127.

Marques, D.M.; Silva, A.B.; Mantovani, J.R.; Pereira, D.S.; Souza, T.C., 2018. Growth and physiological responses of tree species (Hymenaeacour baril L., Peltophorum dubium (Spreng.) Taub. and Myroxylon peruiferum L. F.) exposed to different copper concentrations in the soil. Viçosa: Revista Árvore, v. 42, 2, e420202. https://doi.org/10.1590/1806-90882018000200002.

Marx, D.H., 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathologist, v. 59, (2), 153-163.

Mateos-Naranjo, E.; Andrades-Moreno, L.; Cambrollé, J.; Perez-Martin, A., 2013. Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: ecotoxicological implications. Ecotoxicology Environmental Safety, v. 90, 136-142. https://doi.org/10.1016/j.ecoenv.2012.12.020.

Miyazawa, M.; Pavan, M.A.; Muraoka, T.; Carmo, C.A.F.S.; Melo, W.J., 2009. Análise química de tecido vegetal. In: Silva, F.C. (Ed.). Manual de análises químicas de solos, plantas e fertilizantes. 2. ed. Embrapa Informação Tecnológica, Brasília, pp. 59-85.

Moreira, F.M.S.; Siqueira, J.O.S., 2006. Microbiologia e bioquímica do solo. UFLA, Lavras, 729 pp.

Mousavi, S.S.; Karami, A.; Haghighi, T.M.; Tahmasebi, A., 2022. Lead, copper, zinc and aluminum tolerance in contrasting ecotypes of Scrophularia striata. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2022.01.005.

Raven, P.H.; Evert, R.F.; Eichhorn, S.E., 2007. Biologia vegetal. Guanabara Koogan, Rio de Janeiro, 906 pp.

Saidelles, A.P.F.; Kiechner, R.M.; Santos, N.R.Z.; Flores, E.M.M.; Bartz, F.B., 2010. Análise de metais em amostras comerciais de erva-mate no sul do Brasil. Alimentos e Nutrição, v. 21, (2), 259-265.

Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, v. 9, 671-675. https://doi.org/10.1038/nmeth.2089.

Silva, F.C., 2009. Manual de análises químicas de solos, plantas e fertilizantes. 2. ed. Embrapa Informação Tecnológica, Brasília, 627 pp.

Silva, I.C.; Rocha, C.; Rocha, M.C.; Sousa, C.M., 2018. Growth of Brachiaria decumbens in Latosol contaminated with copper. Ciência e Agrotecnologia, v. 42, (2), 168-175. https://doi.org/10.1590/1413-70542018422030317.

Silva, R.F.; Antoniolli, Z.I.; Andreazza, R., 2003. Produção de mudas de Pinus elliottii Engelm. micorrizadas em solo arenoso. Ciência Florestal, v. 13, (2), 57-65. https://doi.org/10.5902/198050981742.

Silva, R.F.; Antoniolli, Z.I.; Lupatini, M.; Trindade, L.L.; Silva, A.S., 2010. Tolerância de mudas de canafístula (Peltophorum dubium (spreng.) taub.) inoculadas com Pisolithus microcarpus a solo com excesso de cobre. Ciência Florestal, v. 20, (1), 147-156. https://doi.org/10.5902/198050981768.

Silva, R.F.; Ros, C.O.; Dellai, A.; Grolli, A.L.; Scheid, D.L.; Viel, P., 2016. Interferência de doses de cobre no crescimento e na qualidade de mudas de Bauhinia forficata Link, Pterogyne nitens Tul e Enterolobium contortisiliquum Vell. Ciência Florestal, v. 26, (2), 647-655. https://doi.org/10.5902/1980509822764.

Silva, R.F.; Ros, C.O.; Scheid, D.A.; Grolli, A.L.; De Marco, R.; Missio, E.L., 2015. Copper translocation and tolerance in seedlings of tree species grown in contaminated soil. Revista Brasileira de Engenharia Agrícola e Ambiente, v. 19, (11), 1093-1099. https://doi.org/10.1590/1807-1929/agriambi.v19n11p1093-1099.

Smith, S.E.; Read, D.J., 2008. Mycorrhizalsymbiosis. 3. ed. Academic Press, San Diego, 787 pp.

Souza, E.L.; Antoniolli, Z.I.; Machado, R.G.; Eckhardt, D.P.; Dahmer, S.F.B.; Schirmer, G.K., 2012. Efeito da inoculação com isolados de fungos ectomicorrízicos sobre o desenvolvimento de mudas de Eucalyptus grandis Hillex Maiden. Ciência Florestal, v. 22, (2), 251-261. https://doi.org/10.5902/198050985732.

Steffen, R.B.; Antoniolli, Z.I.; Steffen, G.P.K.; Silva, R.F., 2012. Óleo essencial de Eucalyptus grandis Hillex Maiden no estímulo à micorrização de mudas de sibipiruna (Caesalpinia peltophoroides Benth.). Ciência Florestal, v. 22, (1), 69-78. https://doi.org/10.5902/198050985080.

Taiz, L.; Zeiger, E., 2009. Fisiologia vegetal. 4ª ed. Artmed, Porto Alegre, 848 pp.

United States Environmental Protection Agency (USEPA), 1996. Method 3050 B: acid digestion of sediments, sludges, and soils. USEPA, Washington, D.C., 12 pp.

Volcão, L.M.; Halicki, P.C.B.; Christ-Ribeiro, A.; Ramos, D.F.; Badiale-Furlong, E.; Andreazza, R.; Bernardi, E.; Da Silva Júnior, F.M.R., 2022. Mushroom extract of Lactarius deliciosus (L.) Sf. Gray as biopesticide: Antifungal activity and toxicological analysis. Journal of Toxicology and Environmental Health, Part A, v. 85, (2), 43-55. https://doi.org/10.1080/15287394.2021.1970065.

Weirich, S.W.; Silva, R.F.; Perrando, E.R.; Ros, C.O.; Dellai, A.; Scheid, D.L.; Trombeta, H.W., 2018. Influência de ectomicorrizas no crescimento de mudas de Eucalyptus grandis, Corymbia citriodora, Eucalyptus saligna e Eucalyptus dunnii. Ciência Florestal, v. 28, (2), 765-765. https://doi.org/10.5902/1980509832129.

Wendling, I.; Dutra, L.F., 2010. Produção de mudas de eucalipto por sementes. In: Wendling, I.; Dutra, L.F. Produção de mudas de eucalipto. Embrapa Florestas, Colombo.

Wilkins, D.A., 1978. The measurement of tolerance to edaphic factors by means of root grown. The New Phytologist, v. 80, (3), 623-633. https://doi.org/10.1111/j.1469-8137.1978.tb01595.x.

Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R., 2022. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution, v. 301, 119035. https://doi.org/10.1016/j.envpol.2022.119035.

Yruela, I., 2009. Copper in plants: acquisition, transport and interactions. Functional Plant Biology, v. 36, (5), 409-430. https://doi.org/10.1071/FP08288.

Yruela, I., 2013. Transition metals in plant photosynthesis. Metallomics, v. 5, (9), 1090-1109. https://doi.org/10.1039/c3mt00086a.

Downloads

Published

2022-07-09

How to Cite

Coinaski, D. A., Silva, R. F., Da Ros, C. O., da Rosa, G. M., Soriani, H. H., & Andreazza, R. (2022). Growth and tolerance of Ilex paraguariensis A. St.-Hil. inoculated with ectomycorrhizal fungi in copper-contaminated soil. Revista Brasileira De Ciências Ambientais, 57(2), 343–351. https://doi.org/10.5327/Z2176-94781236

More articles by the same author(s)