Vegetation dynamics and precipitation sensitivity in three regions of northern Pantanal of Mato Grosso

Authors

DOI:

https://doi.org/10.5327/Z217694781132

Keywords:

NDVI; wavelet; cross-correlation; seasonality.

Abstract

The wet areas of the Pantanal provide important services such as water and carbon storage, improved water quality, and climate regulation. Analysis and monitoring of vegetated land and precipitation on a regional scale using remote sensing data can provide important information for the preservation of the landscape and biodiversity of the region. Thus, the purpose was to analyze characteristics of the green cycle of the vegetated surface and to what extent the vegetated surface responds to the variability of precipitation in the Pantanal. The areas include the regions of Cáceres (CAC), Poconé (POC), and Barão de Melgaço (BAM) in Mato Grosso. Time series of accumulated precipitation (PPT) and NDVI (Normalized Difference Vegetation Index) were used for the period from 2000 to 2016, obtained on NASA’s Giovanni platform (National Aeronautics and Space Administration). The analysis of the wavelet transform was applied for NDVI data and there was cross-correlation analysis for PPT and NDVI data. The results showed that the highest correlation between PPT and NDVI was positive with a 1-month lag, but was significant with a lag of up to 3 months. The wavelet analyses showed that the largest wavelet powers occurred at the frequency between 0.5 and 1.3 years, i.e., the NDVI series presented the main variances on the approximately annual scale, indicating that these characteristics are important aspects of local phenology variability, such as cumulative green throughout the year and generalized senescence.

Downloads

Download data is not yet available.

References

Baptista, M.S.P.; Assumption, V.A.; Seleme, E.P.; Sartori, A.L.B., 2018. Population structure of Albizia Niopoides (Benth.) Burkart e Mimosa Hexandra Micheli (Fabaceae) in chaco brasileiro. Bulletin of the Paraense Museum Emilio Goeldi – Natural Sciences, v. 12, (2), 169-716.

Bergier, I., 2013. Effects of highland use over lowlands of the Brazilian Pantanal. Science of the Total Environment, v. 463-464, 1060-1066. https://doi.org/10.1016/j.scitotenv.2013.06.036.

Bergier, I.; Assine, M.L.; McGlue, M.M.; Alho, C.J.; Silva, A.; Guerreiro, R.L.; Carvalho, J.C., 2018. Amazon rainforest modulation of water security in the Pantanal wetland. Science of the Total Environment, v. 619-620, 1116-1125. https://doi.org/10.1016/j.scitotenv.2017.11.163.

Bispo, R.C.; Petrini, M.A.; Lamparelli, R.A.C.; Rocha, J.V., 2013. Supervised classification applied to vegetation mapping in the Baron De Melgaço municipality (Mato Grosso State, Brazil), using modis imagery. Geografia, v. 38, 9-23.

Biudes, M.S.; Nogueira, J.S.; Dalmagro, H.J.; Axe, N.G.; Danelichen, V.H.M.; Souza, M.C., 2012. Change in the microclimate caused by the conversion of a forest will change to pasture in the north of the Pantanal. Agri-Environmental Science Journal, v. 10, 61-68.

Burgess, T.L., 1995. Desert grassland, mixed shrub savanna, shrub-steppe, or semidesert scrub. In: McClaran, M.P.; VanDevender, T.R. (Eds.), The desert grassland. University of Arizona Press, Tucson, pp. 31-67.

Corrêa, R.; Balduíno, A.; Teza, C.; Baptista, G.; Silva, D. (2017). Recovery of plant cover and photosynthetic activity in revegetated deposits in the Federal District. Brazilian Journal of Environmental Sciences (Online), (46), 75-87. https://doi.org/10.5327/Z2176-947820170208.

Dalmolin, ÂC.; Lobo, F.A.; Vourlitis, G.; Silva, P.R.; Dalmagro, H.J.; Antunes Jr., M.Z.; Ortíz, C.E.R., 2015. Is the dry season an important driver of phenology and growth for two Brazilian savanna tree species with contrasting leaf habits? Plant Ecology, v. 216, (3), 407-417. https://doi.org/10.1007/s11258-014-0445-5.

Danelichen, V.H.D.M.; Biudes, M.S.; Souza, M.C.; Machado, N.G.; Nogueira, J.D.S., 2016. Relations of vegetation and water indices to volumetric soil water content in the Pantanal of Mato Grosso, Brazil. International Journal of Remote Sensing, v. 37, (18), 4261-4275. https://doi.org/10.1080/01431161.2016.1213921.

De Almeida, T.I.R.; Penatti, N.C.; Ferreira, L.G.; Arantes, A.E.; Amaral, C.H., 2015. The main component analysis applied to a time series of MODIS images: the Spatio-temporal variability of the Pantanal wetland, Brazil. Wetlands Ecology and Management, v. 23, (4), 737-748. https://doi.org/10.1007/s11273-015-9416-4.

De Deus, F.F.; Schuchmann, K.L.; Arieira, J.; Tissiani, A.S.O.; Marques, M.I., 2020. Avian beta diversity in a neotropical wetland: the effects of flooding and vegetation structure. Wetlands, v. 40, 1513-1527. https://doi.org/10.1007/s13157-019-01240-0.

De Morais Danelichen, V.H.; Biudes, M.S., 2020. Biophysical parameters analysis in the detection of coverage changes and land use in a conservation unit in the Brazilian Pantanal. Ibero-American Journal of Environmental Sciences, v. 11, (5), 664-676. https://doi.org/10.6008/CBPC2179-6858.2020.005.0059.

Derrick, T.R.; Thomas, J.M., 2004. Time series analysis: the cross-correlation function. In: Stergiou, N. (Ed.), Innovative analyses of human movement. Human Kinects, pp. 189-205.

Didan, K., 2015. MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13C2.006.

Erwin, K.L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management, v. 17, (1), 71. https://doi.org/10.1007/s11273-008-9119-1.

Farge, M., 1992. Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, v. 24, 395-457. https://doi.org/10.1146/annurev.fl.24.010192.002143.

Feng, X.; Porporate, A.; Rodriguez-Iturbe, I., 2013. Changes in rainfall seasonality in the tropics. Nature Climate Change, v. 3, (9), 811-815. https://doi.org/10.1038/nclimate1907.

Fontana, D.C.; Pinto, D.G.; Junges, A.H.; Bremm, C., 2015. Inferences about the agricultural calendar from NDVI/MODIS time profiles. Bragantia, v. 74, (3), 350-358.

Fortes, C.F.; Nunes-da-Cunha, C.; Rosa, S.A.; Paixão, E.; Junk, W.J.; Schöngart, J., 2018. Dendrochronological records of a pioneer tree species containing ENSO signal in the Pantanal, Brazil. Brazilian Journal of Botany, v. 41, (1), 167-174. https://doi.org/10.1007/s40415-017-0434-8.

Franco, A.C.; Bustamante, M.; Caldas, L.S.; Goldstein, G.; Meinzer, F.C.; Kozovits, A.R.; Rundel, P.; Coradin, V.T., 2005. Leaf functional traits of Neotropical savanna trees with seasonal water deficit. Trees, v. 19, (3), 326-335. https://doi.org/10.1007/s00468-004-0394-z.

Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E., 2008. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sensing of Environment, v. 112, (2), 576-587. https://doi.org/10.1016/j.rse.2007.05.017.

Gris, D.; Paixão, E.; Arruda, R.C.; Ishii, I.H.; Marques, M.R.; Damascene-Junior, G.A., 2020. Growth and establishment of monodominant stands affected by ENSO and flooding in the Pantanal. Scientific Reports, v. 10, (1), 1-13. https://doi.org/10.1038/s41598-020-60402-x.

Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Hall, F.G.; Myneni, R.B.; Wang, Y.; Bi, J.; Moura, Y. M.; Sellers, P.J., 2014. Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences, v. 111, (45), 16041-16046. https://doi.org/10.1073/pnas.1404870111.

Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S., 2013. Global flood risk under climate change. Nature Climate Change, v. 3, (9), 816-821. https://doi.org/10.1038/nclimate1911.

Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Baasansuren, J.; Fukuda, M.; Troxler, T.G., 2014. 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. IPCC, Switzerland.

Ioris, A.A.R.; Irigaray, C.T.; Girard, P., 2014. Institutional responses to climate change: opportunities and barriers for adaptation in the Pantanal and the Upper Paraguay River Basin. Climatic Change, v. 127, (1), 139-151. https://doi.org/10.1007/s10584-014-1134-z.

Ivory, S.J.; McGlue, M.M.; Spera, S.; Silva, A.; Bergier, I., 2019. Vegetation, rainfall, and pulsing hydrology in the Pantanal, the world's largest tropical wetland. Environmental Research Letters, v. 14, (12), 124017. https://doi.org/10.1088/1748-9326/ab4ffe.

Jacquin, A.; Sheeren, D.; Lacombe, J.P., 2010. Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time series. International Journal of Applied Earth Observation and Geoinformation, v. 12, (suppl. 1), S3-S10. https://doi.org/10.1016/j.jag.2009.11.004

Joshi, N.; Gupta, D.; Suryavanshi, S.; Adamowski, J.; Madramootoo, C.A., 2016. Analysis of trends and dominant periodicities in drought variables in India: a wavelet transform based approach. Atmospheric Research, v. 182, 200-220. https://doi.org/10.1016/j.atmosres.2016.07.030.

Junk, W.J.; Brown, M.; Campbell, I.C.; Finlayson, M.; Gopal, B.; Ramberg, L.; Warner, B.G., 2006. The comparative biodiversity of seven globally important wetlands: a synthesis. Aquatic Sciences, v. 68, (3), 400-414. https://doi.org/10.1007/s00027-006-0856-z.

Junk, W.J.; Nunes da Cunha, C.; Silva, C.J.; Wantzen, K.M., 2011. The Pantanal: ecology, biodiversity and sustainable management of a large seasonal neotropical wetland. Pensoft, Sofia-Moscow.

Junk, W.J.; Piedade, M.T.F.; Lourival, R.; Wittmann, F.; Kandus, P.; Lacerda, L.D.; Bozelli, R.L.; Esteves, F.A.; Nunes da Cunha, C.; Maltchik, L.; Schöngart, J.; Schaeffer-Novelli, Y.; Agostinho, A.A., 2014. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems, v. 24, (1), 5-22. https://doi.org/10.1002/aqc.2386.

Kuplich, T.M.; Moreira, A.; Fontana, D.C., 2013. Time series of vegetation index on different plant types in the Rio Grande do Sul. Brazilian Journal of Agricultural and Environmental Engineering, v. 17, (10), 1116-1123. https://doi.org/10.1590/S1415-43662013001000014.

Lázaro, W.L.; Oliveira-Júnior, E.S.; Silva, C.J.D.; Castrillon, S.K.I.; Muniz, C.C., 2020. Climate change reflected in one of the largest wetlands in the world: an overview of the Northern Pantanal water regime. Acta Limnologica Brasiliensia, v. 32, e104. http://doi.org/10.1590/s2179-975x7619.

Lehmann, C.E.; Archibald, S.A.; Hoffmann, W.A.; Bond, W.J., 2011. Deciphering the distribution of the savanna biome. New Phytologist, v. 191, (1), 197-209. https://doi.org/10.1111/j.1469-8137.2011.03689.x.

Li, J.; Fan, K.; Xu, Z., 2016. Asymmetric response in Northeast Asia of summer NDVI to the preceding ENSO cycle. Climate Dynamics, v. 47, (9-10), 2765-2783. https://doi.org/10.1007/s00382-016-2996-8.

Macedo, H.D.A.; Stevaux, J.C.; Silva, A.; Bergier, I., 2019. Water balance of the upper Paraguay basin and its relationship with hydro climatological dynamics of the Pantanal wetland. Ra’Ega, v. 46, (3), 34-47. http://doi.org/10.5380/raega.v46i3.67014.

Machado, N.G.; Sanches, L.; Silva, L.B.; Novais, J.W.Z.; Aquino, A.M.; Biudes, M.S.; Pinto-Junior, O.B.; Nogueira, J.S., 2015. Soil nutrients and vegetation structure in a neotropical seasonal wetland. Applied Ecology and Environmental Research, v. 13, (2), 289-305. http://doi.org/10.15666/aeer/1302_289305.

Mallat, S., 2008. A wavelet tour of signal processing: the sparse way. Academic Press, Burlington.

Marengo, J.A.; Cunha, A.P.; Cuartas, L.A.; Deusdará Leal, K.R.; Broedel, E.; Seluchi, M.E.; Michelin, C.M.; Baião, C.F.P.; Ângulo, E.C.; Almeida, E.K.; Kazmierczak, M.L.; Mateus, N.P.A.; Silva, R.C.; Bender, F., 2021. Extreme drought in the Brazilian Pantanal in 2019-2020: characterization, causes, and impacts. Frontiers in Water, v. 3, 639204. https://doi.org/10.3389/frwa.2021.639204.

Marengo, J.A.; Oliveira, G.S.; Alves, L.M., 2015. Climate change scenarios in the Pantanal. In: Bergier, I.; Assine, M.L. (Eds.), Dynamics of the Pantanal Wetland in South America. Springer, Cham, pp. 227-238. https://doi.org/10.1007/698_2015_357.

Martínez, B.; Gilabert, M.A., 2009. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment, v. 113, (9), 1823-1842. https://doi.org/10.1016/j.rse.2009.04.016

Miranda, C.S.; Gamarra, R.M.; Mioto, C.L.; Silva, N.M.; Conceição Filho, A.P.; Pott, A., 2018a. Analysis of the landscape complexity and heterogeneity of the Pantanal wetland. Brazilian Journal of Biology, v. 78, (2), 318-327. https://doi.org/10.1590/1519-6984.08816.

Miranda, C.S.; Paranho Filho, A.C.; Pott, A., 2018b. Changes in vegetation cover of the Pantanal wetland detected by vegetation index: a strategy for conservation. Biota Neotropica, v. 18, (1), e20160297. https://doi.org/10.1590/1676-0611-BN-2016-0297.

Moura, M.M.; Santos, A.R.; Pezzopane, J.E.M.; Alexandre, R.S.; Silva, S.F.; Pimentel, S.M.; Andrade, M.S.S.; Silva, F.G.R.; Branco, E.R.F.; Moreira, T.R.; Silva, R.G.; Carvalho, J.R., 2019. Relation of El Niño and La Niña phenomena to precipitation, evapotranspiration, and temperatures in the Amazon basin. Science of the Total Environment, v. 651, (part 1), 1639-1651. https://doi.org/10.1016/j.scitotenv.2018.09.242

Muniz, C.C.; Santana, V.N.; Barbosa, A.P.D.; Silva, L.N.L.; Oliveira Junior, E.S., 2017. Reproductive characteristics of Eigenmannia trilineata (López & Castello, 1966-tuvira), with the flood pulse in flooding in the Paraguay River, North Pantanal, Brazil. Agri-Environmental Science Journal, v. 15, (1), 126-131. https://doi.org/10.5327/rcaa.v15i1.2206.

Nikhil Raj, P.P.; Azeez, P.A., 2012. Trend analysis of rainfall in Bharathapuzha River basin, Kerala, India. International Journal of Climatology, v. 32, (4), 533-539. https://doi.org/10.1002/joc.2283.

Novais, J.; Sanches, L.; Machado, N.; Silva, L.; Aquino, A.; Rodrigues, T., 2015. Hourly and seasonal variation in solar radiation affected and reflected and its relationship to micrometeorological variables in the northern mato-grossan pantanal. Brazilian Journal of Environmental Sciences (Online), (38), 96-108. https://doi.org/10.5327/Z2176-947820150053.

Pandey, B.K.; Tiwari, H.; Khare, D., 2017. Trend analysis using discrete wavelet transform (DWT) for long-term precipitation (1851-2006) over India. Hydrological Sciences Journal, v. 62, (13), 2187-2208. https://doi.org/10.1080/02626667.2017.1371849.

Paranhos Filho, B.C.; Moreira, E.S.; Oliveira, A.K.M.D.; Pagotto, T.C.S.; Mioto, C.L., 2014. Analysis of land cover changes using remote sensing between 2003 and 2010 in the Pantanal region. Sanitary and Environmental Engineering, v. 19, (spe.), 69-76. https://doi.org/10.1590/S1413-41522014019010000305.

Penatti, N.C.; Almeida, T.I.R., 2012. Subdivision of Pantanal quaternary wetlands: MODIS NDVI time-series in the indirect detection of sediments granulometry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 1, 311-316. https://doi.org/10.5194/isprsarchives-XXXIX-B8-311-2012.

Penatti, N.C.; Almeida, T.I.R.; Ferreira, L.G.; Arantes, A.E.; Coe, M.T., 2015. Satellite-based hydrological dynamics of the world's largest continuous wetland. Remote Sensing of Environment, v. 170, 1-13. https://doi.org/10.1016/j.rse.2015.08.031.

Qiu, B.; Zeng, C.; Tang, Z.; Chen, C., 2013. Characterizing spatiotemporal non-stationarity in vegetation dynamics in China using MODIS EVI dataset. Environmental Monitoring and Assessment, v. 185, (11), 9019-9035. https://doi.org/10.1007/s10661-013-3231-2.

Quiroz, R.; Yarlequé, C.; Posadas, A.; Mares, V.; Immerzeel, W.W., 2011. Improving daily rainfall estimation from NDVI using a wavelet transform. Environmental Modelling & Software, v. 26, (2), 201-209. https://doi.org/10.1016/j.envsoft.2010.07.006.

Rao, V.B.; Cavalcanti, I.F.; Hada, K., 1996. Annual variation of rainfall over Brazil and water vapor characteristics over South America. Journal of Geophysical Research: Atmospheres, v. 101, (D21), 26539-26551. https://doi.org/10.1029/96JD01936.

Rhif, M.; Ben Abbes, A.; Farah, I.R.; Martínez, B.; Sang, Y., 2019. Wavelet transforms application for/in non-stationary time-series analysis: a review. Applied Sciences, v. 9, (7), 1345. https://doi.org/10.3390/app9071345.

Rosemback, R.; Ferreira, N.J.; Shimabukuro, Y.E.; Comfort, J.C., 2013. Analysis of plant cover dynamics in the southern region of Brazil from MODIS/TERRA data. Revista Brasileira de Cartografia, v. 62, (2), 401-416.

Rossatto, D.R.; Hoffmann, W.A.; Franco, A.C., 2009. Differences in growth patterns between co‐occurring forest and savanna trees affect the forest-savanna boundary. Functional Ecology, v. 23, (4), 689-698. https://doi.org/10.1111/j.1365-2435.2009.01568.x.

Rouse Jr., J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W., 1974. Paper A 20. In Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, DC on December 10-14, 1973 (v. 351, pp. 309). Scientific and Technical Information Office, National Aeronautics and Space Administration.

Santos, C.A.G.; Freire, P.K.M.M.; Torrence, C., 2013. The wavelet transformation and its application in hydrological series analysis. Brazilian Water Resources Magazine, v. 18, (3), 271-280. http://doi.org/10.21168/rbrh.v18n3.p271-280.

Scanlon, T.M.; Albertson, J.D.; Caylor, K.K.; Williams, C.A., 2002. Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem. Remote Sensing of Environment, v. 82, (2-3), 376-388. https://doi.org/10.1016/S0034-4257(02)00054-8.

Schulz, C.; Whitney, B.S.; Rossetto, O.C.; Neves, D.M.; Crabb, L.; Oliveira, E.C.; Lima, P.L.T.; Afzal, M.; Laing, A.F.; Fernandes, L.C.S.; Silva, C.A.; Steinke, V.A.; Steinke, E.T.; Saito, C.H., 2019. Physical, ecological and human dimensions of environmental change in Brazil's Pantanal wetland: Synthesis and research agenda. Science of the Total Environment, v. 687, 1011-1027. https://doi.org/10.1016/j.scitotenv.2019.06.023.

Schwieder, M.; Leitão, P.J.; Pinto, J.R.; Teixeira, A.M.C.; Pedroni, F.; Sanchez, M.; Bustamante, M.M.; Hostert, P., 2018. Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna. Carbon Balance and Management, v. 13, (1), 7. https://doi.org/10.1186/s13021-018-0097-1

Shihua, L.; Jingtao, X.; Ping, N.; Jing, Z.; Hongshu, W.; Jingxian, W., 2014. Monitoring paddy rice phenology using time-series MODIS data over Jiangxi Province, China. International Journal of Agricultural and Biological Engineering, v. 7, (6), 28-36. https://doi.org/10.3965/j.ijabe.20140706.005.

Silva, J.S.V.; Abdon, M.M., 1998. Delimitation of the Brazilian Pantanal and its sub-regions. Brazilian Agricultural Research, v. 33, (13), 1703-1711.

Soto-Mardones, L.; Maldonado-Ibarra, I., 2015. Spatio-temporal variability of NDVI and land surface temperature in the Maule and Biobío Regions (2000-2012). Chilean Journal of Agricultural Research, v. 75, (4), 434-442. http://doi.org/10.4067/S0718-58392015000500008.

Tartari, R.; Machado, N.G.; Anjos, M.R.D.; Cunha, J.M.D.; Musis, C.R.D.; Nogueira, J.D.S.; Biudes, M.S., 2015. Analysis of biophysical indices from TM Landsat 5 images in a heterogeneous landscape in the Southwest Amazon. Environment & Water Magazine, v. 10, (4), 943-953. https://doi.org/10.4136/ambi-agua.1663.

Thielen, D.; Schuchmann, K.L.; Ramoni-Perazzi, P.; Marquez, M.; Rojas, W.; Quintero, J.I.; Marques, M.I., 2020. Quo Vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLoS One, v. 15, (1), e0227437. https://doi.org/10.1371/journal.pone.0227437.

Torrence, C.; Compo, G.P., 1997. The practical guide to wavelet analysis. Bulletin of the American Meteorological Society, v. 79, 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, v. 8, (2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0.

Viana, D.R.; Alvalá, R.C.S., 2011. Vegetation index performance for the Pantanal region during both dry and rainy seasons. Geografia, v. 36, 143-158.

Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A., 2013. Response of vegetation to drought time scales across global land biomes. Proceedings of the National Academy of Sciences, v. 110, (1), 52-57. https://doi.org/10.1073/pnas.1207068110.

Vourlitis, G.L.; Rocha, H.R., 2011. Flux dynamics in the closed and closed-forest transition of Brazil. In: Hill, M.J.; Hanan, N.P. (Eds.), Ecosystem function in global savannas: measurement and modeling at landscape to global scales. CRC, Boca Raton, pp. 97-116.

Wessels, K.J.; Prince, S.D.; Frost, P.E.; Van Zyl, D., 2004. Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI Time-Series. Remote Sensing of Environment, v. 91, (1), 47-67.

Zhang, X.; Friedl, M.A.; Schaaf, C.B., 2006. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. Journal of Geophysical Research: Biogeosciences, v. 111, (G4), 1-14. https://doi.org/10.1029/2006JG000217.

Zoffoli, M.L.; Kandus, P.; Madanes, N.; Calvo, D.H., 2008. Seasonal and interannual analysis of wetlands in South America using NOAA-AVHRR NDVI time series: the case of the Parana Delta Region. Landscape Ecology, v. 23, (7), 833-848. https://doi.org/10.1007/s10980-008-9240-9.

Downloads

Published

2022-03-16

How to Cite

de Moraes, T. J., Machado, N. G., Biudes, M. S., Banga, N. M., & Caneppele, L. B. (2022). Vegetation dynamics and precipitation sensitivity in three regions of northern Pantanal of Mato Grosso. Revista Brasileira De Ciências Ambientais, 57(1), 125–136. https://doi.org/10.5327/Z217694781132

More articles by the same author(s)