Potential of carbon credits generation from organic waste composting of large generators: an alternative to the final disposal in sanitary landfills
DOI:
https://doi.org/10.5327/Z2176-94781121Keywords:
Composting, Greenhouse Gases, Methane, Food Waste. Avoided Emissions, Clean Development Mechanism - CDM. Carbon Credit.Abstract
This study aims to measure the potential for reducing Greenhouse Gases by surveying the amount of methane avoided by a company that collects and processes organic waste from large generators through composting. The applied methodology was the avoidance of methane emissions through composting, from the Clean Development Mechanism, considering as a baseline the emissions of the Santa Rosa sanitary landfill, located in the city of Seropédica, state of Rio de Janeiro, Brazil. With data on the amount of organic waste composted by the company, the emissions of carbon dioxide equivalent (CO2eq) were calculated, considering the standard emission factors established in the methodological instrument. The data show that the emission of 22,062 tons of CO2eq was avoided, which corresponds to a reduction of 83.5% of CH4 emissions, if the waste composted by the company were deposited in the Santa Rosa sanitary landfill. In terms of carbon credit, according to the calculation, this value would correspond to approximately 17 thousand euros annually (considering current values). Thus, the applicability of this study contributes as a scientific basis to assist decision-making and effectiveness of other composting projects, enabling greater reductions in emissions of Greenhouse Gases in the long term and adequacy to the future perspectives of carbon market development. At the same time, it contributes to the construction of alternative scenarios for mitigation and reduction of Greenhouse Gases emissions in Brazil and promotes sustainable waste management, as determined by the National Solid Waste Policy.
Downloads
References
Abramovay, R.; Speranza, J.S.; Petitgand, C. (2013). Lixo zero: gestão de resíduos para uma sociedade próspera. (Accessed on Feb. 15, 2022). Available at: https://ricardoabramovay.com/wp-content/uploads/2014/11/Lixo-Zero_ebook_iba.pdf.
Amlinger, F.; Peyr, S.; Cuhls, C., 2008. Greenhouse Gas emissions from composting and mechanical biological treatment. Waste Management e Research, v. 26, (1), 47-60. https://doi.org/10.1177/0734242X07088432.
Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C., 2010. Greenhouse gas emissions from home composting of organic household waste. Waste Management, v. 30, (12), 2475-2482. https://doi.org/10.1016/j.wasman.2010.07.004.
Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C., 2012. Home composting as an alternative treatment option for organic household waste in Denmark: an environmental assessment using life cycle assessment-modelling. Waste Management, v. 32, (1), 31-40. https://doi.org/10.1016/j.wasman.2011.09.014.
Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais (ABRELPE). 2021. Panorama dos resíduos sólidos no Brasil 2020. ABRELPE, São Paulo.
Awasthi, S.K.; Sarsaiya, S.; Awasthi, M.K.; Liu, T.; Zhao, J.; Kumar, S.; Zhang, Z., 2020. Changes in global trends in food waste composting: research challenges and opportunities. Bioresource Technology, v. 299, 122555. https://doi.org/10.1016/j.biortech.2019.122555.
Brasil. Ministério das Relações Exteriores, 2019. Ponto Focal Nacional da UNFCCC. Departamento para Sustentabilidade Ambiental Divisão da Mudança do Clima. Brazil’s Third Biennial Update Report to the United Nations Framework Convention on Climate Change. Ministério das Relações Exteriores, Ponto Focal Nacional da UNFCCC, Brasília.
Brasil. Ministério do Desenvolvimento Regional, 2021. Secretaria Nacional de Saneamento. Sistema Nacional de Informações sobre Saneamento (SNIS): diagnóstico do manejo de resíduos sólidos urbanos – 2020. Brasília: MDR.
Catorza, C.F., 2020. Potencial de redução de GEE via compostagem: estudo de caso de uma empresa de coleta e tratamento de resíduos orgânicos de grandes geradores. Dissertação, Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro.
Chen, T.; Zhang, S.; Yuan, Z., 2020. Adoption of organic solid waste composting products: a critical review. Journal of Cleaner Production, v. 272, 122712. https://doi.org/10.1016/j.jclepro.2020.122712.
Deus, R.M.; Battistelle, R.A.G.; Silva, G.H.R. 2017. Current and future environmental impact of household solid waste management scenarios for a region of Brazil: carbon dioxide and energy analysis. Journal of Cleaner Production, v. 155, (parte 1), 218-228. https://doi.org/10.1016/j.jclepro.2016.05.158.
Diniz Oliveira, T.D.; Gurgel, A.C.; Tonry, S., 2019. International market mechanisms under the Paris Agreement: a cooperation between Brazil and Europe. Energy Policy, v. 129, 397-409. https://doi.org/10.1016/j.enpol.2019.01.056.
Edmond, J.; Forrister, D.; Clarke, L.; Clara, S.; Munnings, C., 2019. The economic potential of article 6 of the Paris Agreement and implementation challenges. IETA, University of Maryland and CPLC, Washington, D.C. (Accessed on Feb. 15, 2022). Available at: https://www.ieta.org/resources/International_WG/Article6/CLPC_A6%20report_no%20crops.pdf.
Firmo, A.L.B.; Moreira, H.C.; Jucá, J.F.T.; Lucena, L.F.L.; Mariano, M.O.H.; Russo, M.A.T.; Schimidt, T., 2019. Gestão de resíduos sólidos urbanos com baixas emissões de GEE. Ministério de Desenvolvimento Regional / PLANSAB, Brasília. v. 2. (Accessed on Apr. 17, 2020). Available at: https://www.mdr.gov.br/images/stories/ArquivosSNSA/Arquivos_PDF/plansab/2-Caderno temático Gestão de RSU com baixas emissões de GEE.pdf.
Galgani, P.; Van Der Voet, E.; Korevaar, G., 2014. Composting, anaerobic digestion and biochar production in Ghana. Environmental–economic assessment in the context of voluntary carbon markets. Waste Management, v. 34, (12), 2454-2465. https://doi.org/10.1016/j.wasman.2014.07.027.
Godoy, S.G.M. 2013. Projetos de redução de emissões de gases estufa: desempenho e custos de transação. Revista de Administração, v. 48, (2), 310-326. https://doi.org/10.5700/rausp1090.
Inácio, C.T., 2010. Dinâmica de gases e emissões de metano na compostagem de resíduos orgânicos. Dissertação, Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro.
Instituto de Pesquisa Econômica Aplicada (IPEA), 2018. Legado do MDL: impactos e lições aprendidas a partir da implementação do Mecanismo de Desenvolvimento Limpo no Brasil. IPEA, Brasília. (Accessed on Mar. 04, 2020). Available at: http://repositorio.ipea.gov.br/handle/11058/8854.
International Carbon Action Partnership (ICAP), 2021. Allowance Price Explorer. (Accessed on Feb. 15, 2022). Available at: https://icapcarbonaction.com/en/ets-prices.
Jensen, M.B.; Møller, J.; Mønster, J.; Scheutz, C., 2017. Quantification of greenhouse gas emissions from a biological waste treatment facility. Waste Management, v. 67, 375-384. https://doi.org/10.1016/j.wasman.2017.05.033.
Jensen, M.B.; Møller, J.; Scheutz, C., 2016. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA). Waste Management, v. 49, 491-504. https://doi.org/10.1016/j.wasman.2016.01.035.
Jeswani, H.K.; Azapagic, A., 2016. Avaliação da sustentabilidade ambiental da recuperação de energia de resíduos sólidos urbanos no Reino Unido. Waste Management, v. 50, 346-363. https://doi.org/10.1016/j.wasman.2016.02.010.
Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F., 2018. What a waste 2.0: a global snapshot of solid waste management to 2050. Overview booklet. World Bank, Washington, D.C. License: Creative Commons Attribution CC BY 3.0 IGO.
Kiehl, E.J., 1998. Manual de compostagem: maturação e qualidade do composto. 4. ed. Edmar José Kiehl, Piracicaba, 171 p.
Lima Júnior, R.G.S.; Mahler, C.F.; Dias, A.C.; Luiz Junior, W.F., 2017. Avaliação de novas práticas de compostagem em pequena escala com aproveitamento energético. Engenharia Sanitária e Ambiental, v. 22, (2), 361-370. https://doi.org/10.1590/s1413-41522016159687.
Menezes, R.O.; Castro, S.R.; Silva, J.B.G.; Teixeira, G.P.; Silva, M.M.M. 2019. Análise estatística da caracterização gravimétrica de resíduos sólidos domiciliares: estudo de caso do município de Juiz de Fora, Minas Gerais. Engenharia Sanitária e Ambiental, v. 24, (2), 271-282. https://doi.org/10.1590/S1413-41522019177437.
Mortula, M.M.; Ahmed, A.; Fattah, K.P.; Zannerni, G.; Shah, S.A.; Sharaby, A.M., 2020. Gestão sustentável de resíduos orgânicos em Sharjah, Emirados Árabes Unidos, por meio de compostagem. Methods and Protocols, v. 3, (4), 76. https://doi.org/10.3390/mps3040076.
Mota, S.R., 2021. Seminário Final do Projeto Mercados de Carbono com o Lançamento do Marco Regulatório Respectivo. Conselho Brasileiro para o Desenvolvimento Sustentável. 1 Vídeo (52 min 16 seg). (Accessed on Aug. 31, 2021). Available at: https://www.youtube.com/watch?v=Ttz5pHC51uk&ab_channel=ConselhoEmp.Brasileiroparao DesenvolvimentoSustent%C3%A1velCEBDS.
Paiva, D.S.; Fernandez, L.G.; Ventura, A.C.; Alvarez, G.; Andrade, J.C.S., 2015. Mercado voluntário de carbono: análises de cobenefícios de projetos brasileiros. Revista de Administração Contemporânea, v. 19, (1), 45-64. https://doi.org/10.1590/1982-7849rac20151240.
Polzer, V., 2016. Compostagem: uma necessidade dos centros urbanos. Revista Brasileira de Ciências Ambientais (Online), (40), 124-136. https://doi.org/10.5327/Z2176-947820164014.
Reichert, G.A.; Mendes, C.A.B. 2014. Avaliação do ciclo de vida e apoio à decisão em gerenciamento integrado e sustentável de resíduos sólidos urbanos. Engenharia Sanitária e Ambiental, v. 19, (3), 301-313. https://doi.org/10.1590/S1413-41522014019000001145.
Ricce, T., 2021. A regulamentação do mercado de crédito de carbono. FGV, EASP. 1 Vídeo (1 h 3 min) (Live). (Acessed on Aug. 31, 2021). Available at: https://www.youtube.com/watch?v=FisvTN-xn6s&t=2046s&ab_channel=FGV.
Rodrigues, C.A.O.; Pertussatti, C.A.; Pereira, C.D.; Carvalho, E.C.; Reichert, G.A.; Moreira, H.C.; Proença, L.C.; Colturato, L.F.D.; Moreira, M.C.; Viana, M.O.B.; Silva, M.; Padovani, P.W.; Freitas, T.P., 2019. Valorização de resíduos orgânicos. Ministério de Desenvolvimento Regional/PLANSAB, Brasília. v. 4. (Accessed on Apr. 17, 2020). Available at: https://www.mdr.gov.br/images/stories/ArquivosSNSA/Arquivos_PDF/plansab/4-CadernotematicoValorizacaodeResiduosOrganicos.pdf.
Sanchez, A.X.; Artola, A.; Barrena, R.; Colón, J.; Font, X.; Komilis, D., 2015. Composting of wastes. In: Taherzadeh, M.J.; Richards, T. (Eds.), Resource recovery to approuch zero municipal waste. Boca Raton, pp. 77-106.
Santos, M.M.; Romanel, C.; van Elk, A.G.H.P., 2017. Análise da eficiência de modelos de decaimento de primeira ordem na previsão da emissão de gás de efeito estufa em aterros sanitários brasileiros. Engenharia Sanitária e Ambiental, v. 22, (6), 1151-1162. https://doi.org/10.1590/s1413-41522017156311.
Sharma, B.K.; Chandel, M.K., 2016. Avaliação do ciclo de vida das estratégias de gerenciamento de resíduos sólidos municipais em Mumbai, Índia. Waste Management & Research, v. 35, (1), 79-91. https://doi.org/10.1177/0734242x16675683.
Stua, M.; Nolden, C.; Coulon, M. 2022. Climate clubs embedded in Article 6 of the Paris Agreement. Resources, Conservation and Recycling, v. 180, 106178. https://doi.org/10.1016/j.resconrec.2022.106178.
Torres, C.; Fermam, R.K.S.; Sbragia, I., 2016. CDM projects in Brazil: market opportunity for companies and new designated operational entities. Ambiente & Sociedade, v. 19, (3), 199-212. Erro! A referência de hiperlink não é válida.https://doi.org/10.1590/1809-4422asoc142054v1932016.
United Nations Environment Programme (UNEP); International Solid Waste Association (ISWA), 2015. Global Waste Management Outlook. UNEP, Viena.
United Nations Framework Convention on Climate Change (UNFCCC), 2012. Clean Development Mechanism Program Activity Design Document Form (CDM-CPA-DD): Projeto Federal de Gerenciamento de Resíduos Sólidos e Financiamento de Carbono da Caixa Econômica. (Accessed on Apr. 4, 2020). Available at: https://cdm.unfccc.int/ProgrammeOfActivities/Validation/DB/JVKYPM3AXKL44HJWFPI4FQZZJQDOH1/view.html.
United Nations Framework Convention on Climate Change (UNFCCC), 2015. The twenty-first session of the Conference of the Parties, COP21, and the eleventh session of the Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol (CMP) took place from 30 November to 11 December 2015, in Paris, France. (Accessed on Feb. 5, 2020). Available at: https://unfccc.int/process-and-meetings/conferences/past-conferences/paris-climate-change-conference-november-2015/cop-21.
United Nations Framework Convention on Climate Change (UNFCCC), 2016. Small-scale methodology: avoidance of methane emissions through composting. AMS-III.F. (Accessed on Feb. 25, 2020). Available at: https://cdm.unfccc.int/methodologies/DB/NZ83KB7YHBIA7HL2U1PCNAOCHPUQYX.
United Nations Framework Convention on Climate Change (UNFCCC), 2017a. Methodological tool: emissions from solid waste disposal sites. Version 08.0. (Accessed on Nov. 25, 2019). Available at: https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-04-v6.0.1.pdf/history_view.
United Nations Framework Convention on Climate Change (UNFCCC), 2017b. Methodological tool: project and leakage emissions from composting. Version 02.0. (Accessed on Nov. 25, 2019). Available at: https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-13-v2.pdf.
United Nations Framework Convention on Climate Change (UNFCCC), 2020. Pesquisa de Projetos. United Nations Framework Convention on Climate Change. (Accessed on Mar. 30, 2020). Available at: https://cdm.unfccc.int/Projects/projsearch.html.
Van Elk, A.G.H.P.; Catorza, C.F.S.; Passos, L.H.S., 2021. A contribuição do mercado de carbono nas reduções de emissões de GEE no setor de resíduos sólidos urbanos. In: Congresso Brasileiro de Engenharia Sanitária e Ambiental, 31., 2021, Curitiba. ABES, Curitiba.
Zago, V.C.P.; Barros, R.T.V., 2019. Gestão dos resíduos sólidos orgânicos urbanos no Brasil: do ordenamento jurídico à realidade. Engenharia Sanitária e Ambiental, v. 24, (2), 219-228. https://doi.org/10.1590/s1413-41522019181376.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.