Priority pesticides not covered by GM Ordinance of the Ministry of Health No. 888, of 2021, on water potability standard in Brazil
DOI:
https://doi.org/10.5327/Z2176-94781077Keywords:
Legislation, Environmental microcontaminants, Health, PesticidesAbstract
The intense use of pesticides can be harmful to the environment and human health, being necessary to monitor the environmental concentrations of pesticides. The legislation on drinking water for human consumption is one of the guiding regulations about monitoring priority. Therefore, a systematic review was carried out to compile information on the contamination of surface water, groundwater, and treated water in Brazil. Thereby, we selected those pesticides which, although they are authorized for use and are among the topselling pesticides, are not regulated by GM Ordinance of the Ministry of Health (GM/MS) No. 888, of May 4, 2021. The databases used were PubMed, Scielo, Science Direct, Scopus, and Web of Science. Of the 122 pesticides in the market, 11 were selected. Analyses of environmental dynamics, concentration, and health effects were carried out. The Goss methodology and the Groundwater Ubiquity Score (GUS) index were used to estimate the risk of surface water and groundwater contamination, respectively. The concentrations found were compared with the values provided for in the guidelines adopted by international agencies, determining the Brazilian population’s margin of exposure (MOE) to the target pesticides. The results indicate a high probability of finding imidacloprid and hexazinone in the water, the prevalence of studies on surface waters, and the need to conduct additional studies as papers on some of the target pesticides were not found. It is concluded that the pesticides studied pose a low risk to human health, however, further studies are still required.
Downloads
References
Acayaba, R.D.; Albuquerque, A.F.; Ribessi, R.L.; Umbuzeiro, G.A.; Montagner, C.C., 2021. Occurrence of pesticides in waters from the largest sugar cane plantation region in the world. Environmental Science and Pollution Research International, v. 28, (8), 9824-9835. https://doi.org/10.1007/s11356-020-11428-1.
Agência Nacional de Vigilância Sanitária (ANVISA), 2021. Monografias Autorizadas. Ministério da Saúde, Brasil (Accessed October 5, 2021) at:. https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas-por-letra.
Almeida, M.B.; Madeira, T.B.; Watanabe, L.S.; Meletti, P.C.; Nixdorf, S.L., 2019. Pesticide determination in water samples from a rural area by multi-target method applying liquid chromatography-tandem mass spectrometry. Journal of the Brazilian Chemical Society, v. 30, (8), 1657-1666. https://doi.org/10.21577/0103-5053.20190066.
Amaral, A.M.B.; Gomes, J.L.C.; Weimer, G.H.; Marins, A.T.; Loro, V.L.; Zanella, R., 2018. Seasonal implications on toxicity biomarkers of loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere, v. 191, 876-885. https://doi.org/10.1016/j.chemosphere.2017.10.114.
Amaral, A.M.B.; Moura, L.K.; Pellegrin, D.; Guerra, L.J.; Cerezer, F.O.; Saibt, N.; Prestes, O.D.; Zanella, R.; Loro, V.L.; Clasen, B., 2020. Seasonal factors driving biochemical biomarkers in two fish species from a subtropical reservoir in southern Brazil: An integrated approach. Environmental Pollution, v. 266, part 3, 115168. https://doi.org/10.1016/j.envpol.2020.115168.
Américo-Pinheiro, J.H.P.; Cruz, C.; Aguiar, M.M.; Torres, N.H.; Ferreira, L.F.R.; Machado-Neto, J.G., 2019. Sublethal effects of imidacloprid in hematological parameters of tilapia (Oreochromis Niloticus). Water, Air, and Soil Pollution, v. 230, (8), 193. https://doi.org/10.1007/s11270-019-4256-0.
Américo-Pinheiro, J.H.P.; Machado, A.A.; Cruz, C.; Aguiar, M.M.; Ferreira, L.F.R.; Torres, N.H.; Machado-Neto, J.G., 2020. Histological changes in targeted organs of nile tilapia (Oreochromis Niloticus) exposed to sublethal concentrations of the pesticide carbofuran. Water, Air, and Soil Pollution, v. 231, (5), 228. https://doi.org/10.1007/s11270-020-04628-5.
Araújo, A.S., 2018. Comparação entre os padrões de potabilidade nacional e internacional quanto à presença de agrotóxicos. Specialization monograph, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais. Retrieved 2021-10-24, from https://repositorio.ufmg.br/handle/1843/BUOS-BCEGGQ.
Armas, E.D.; Monteiro, R.T.R.; Antunes, P.M.; Santos, M.A.P.F.; Camargo, P.B.; Abakerli, R.B., 2007. Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do rio corumbataí e principais afluentes. Química Nova, v. 30, (5), 1119-1127. https://doi.org/10.1590/s0100-40422007000500013.
Back, A.J.; Deschamps, F.C.; Santos, M.G.S., 2016. Ocorrência de agrotóxicos em águas usadas com irrigação de arroz no sul de Santa Catarina. Brazilian Journal of Environmental Sciences (Online), (39), 47-58. https://doi.org/10.5327/z2176-9478201611014.
Barizon, R.R.M.; Figueiredo, R.O.; Dutra, D.R.C.S.; Reginato, J.B.; Ferracini, V.L., 2020. Pesticides in the surface waters of the camanducaia river watershed, Brazil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, v. 55, (3), 283-292. https://doi.org/10.1080/03601234.2019.1693835.
Belchior, D.C.V.; Saraiva, A.S.; Córdova, L.A.M.; Scheidt, G.N., 2014. Impactos de agrotóxicos sobre o meio ambiente e a saúde humana. Cadernos de Ciência & Tecnologia, v. 34, (1), 135-151.
Bhatt, P.; Huang, Y.; Zhang, W.; Sharma, A.; Chen, S., 2020. Enhanced cypermethrin degradation kinetics and metabolic pathway in Bacillus Thuringiensis Strain SG4. Microorganisms, v. 8, (2), 223. https://doi.org/10.3390/microorganisms8020223.
Bortoluzzi, E.C.; Rheinheimer, D.S.; Gonçalves, C.S.; Pellegrini, J.B.R.; Maroneze, A.M.; Kurz, M.H.S.; Bacar, N.M.; Zanella, R., 2007. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quimica Nova, v. 30, (8), 1872-1876. https://doi.org/10.1590/S0100-40422007000800014.
Bortoluzzi, E.C.; Rheinheimer, D.S.; Gonçalves, C.S.; Pellegrini, J.B.R.; Zanella, R.; Copetti, A.C.C., 2006. Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 10, (4), 881-887. https://doi.org/10.1590/s1415-43662006000400015.
Brasil. Ministério da Saúde, 2021. Anexo XX da Portaria de Consolidação nº 5/2017, alterado pela Portaria GM/MS nº 888 de 2021. Diário Oficial da República Federativa do Brasil, Brasília.
Brasil. Presidência da República, Casa Civil, 1989. Lei nº 7.802, de 11 de julho de 1989. Diário Oficial da União, Brasília.
Caldas, S.S.; Bolzan, C.M.; Guilherme, J.R.; Silveira, M.A.K.; Escarrone, A.L.V.; Primel, E.G., 2013. Determination of pharmaceuticals, personal care products, and pesticides in surface and treated waters: method development and survey. Environmental Science and Pollution Research, v. 20, (8), 5855-5863. https://doi.org/10.1007/s11356-013-1650-9.
Carvalho, F.P., 2017. Pesticides, environment, and food safety. Food and Energy Security, v. 6, (2), 48-60. https://doi.org/10.1002/fes3.108.
Chao, H.P.; Lee, J.F.; Chiou, C.T., 2017. Determination of the Henry’s Law constants of low-volatility compounds via the measured air-phase transfer coefficients. Water Research, v. 120, 238-244. https://doi.org/10.1016/j.watres.2017.04.074.
Cruz-Alcalde, A.; Sans, C.; Esplugas, S., 2017. Priority pesticides abatement by advanced water technologies: The case of acetamiprid removal by ozonation. Science of the Total Environment, v. 599-600, 1454-1461. https://doi.org/10.1016/j.scitotenv.2017.05.065.
Duarte, J.S.; Dores, E.F.G.C.; Villa, R.D., 2016. Microextração líquido-líquido dispersiva assistida por vortex e ultrassom aplicada à determinação de agrotóxicos triazinas, triazinonas e o triazol flutriafol em água. Química Nova, v. 39, (8), 925-931. https://doi.org/10.5935/0100-4042.20160110.
Elfikrie, N.; Ho, Y.B.; Zaidon, S.Z.; Juahir, H.; Tan, E.S.S., 2020. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi river basin, Malaysia. Science of the Total Environment, v. 712, 136540. https://doi.org/10.1016/j.scitotenv.2020.136540.
Elias, D.; Wang, L.; Jacinthe, P.A., 2018. A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management. Environmental Monitoring and Assessment, v. 190, (2), 79. https://doi.org/10.1007/s10661-017-6441-1.
European Parliament, 2020. Directive (EU) 2020/2,184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (Accessed October 19, 2021) at:. https://eur-lex.europa.eu/eli/dir/2020/2184/oj.
Filizola, H.F.; Ferracini, V.L.; Sans, L.M.A.; Gomes, M.A.F.; Ferreira, C.J.A., 2002. Monitoring and evaluation of the risk of contamination by pesticide in surface water and groundwater in the Guaira region, Sao Paulo, Brazil. Pesquisa Agropecuária Brasileira, v. 37, (5), 659-667. https://doi.org/10.1590/S0100-204X2002000500011.
Fini, N.M.; Madsen, H.; Muff, J., 2019. The effect of water matrix, feed concentration and recovery on the rejection of pesticides using NF/RO membranes in water treatment. Separation and Purification Technology, v. 215, 521-527. https://doi.org/10.1016/j.seppur.2019.01.047.
Gaona, L.; Bedmar, F.; Gianelli, V.R.; Faberi, A.J.; Angelini, H., 2019. Estimating the risk of groundwater contamination and environmental impact of pesticides in an agricultural basin in Argentina. International Journal of Environmental Science and Technology, v. 16, (11), 6657-6670. https://doi.org/10.1007/s13762-019-02267-w.
Goss, D.W., 1992. Screening procedure for soils and pesticides for potential water quality impacts. Weed Technology, v. 6, (3), 701-708. https://doi.org/10.1017/S0890037X00036083.
Guarda, P.M.; Gualberto, L.S.; Mendes, D.B.; Guarda, E.A.; Silva, J.E.C., 2020a. Analysis of triazines, triazoles, and benzimidazoles used as pesticides in different environmental compartments of the Formoso river and their influence on biodiversity in Tocantins. Journal of Environmental Science and Health, Part B, v. 55, (9), 783-793. https://doi.org/10.1080/03601234.2020.1784667.
Guarda, P.M.; Pontes, A.M.S.; Domiciano, R.S.; Gualberto, L.S.; Mendes, D.B.; Guarda, E.A.; Silva, J.E.C., 2020b. Assessment of ecological risk and environmental behavior of pesticides in environmental compartments of the Formoso river in Tocantins, Brazil. Archives of Environmental Contamination and Toxicology, v. 79, (4), 524-536. https://doi.org/10.1007/s00244-020-00770-7.
Guarda, P.M.; Pontes, A.M.S.; Domiciano, R.S.; Gualberto, L.S.; Mendes, D.B.; Guarda, E.A.; Silva, J.E.C., 2020c. Determination of carbamates and thiocarbamates in water, soil and sediment of the Formoso river, TO, Brazil. Chemistry & Biodiversity, v. 17, (4), e1900717. https://doi.org/10.1002/cbdv.201900717.
Guo, F.; Endo, M.; Yamaguchi, T.; Uchino, A.; Sunohara, Y.; Matsumoto, H.; Iwakami, S., 2021. Investigation of clomazone-tolerance mechanism in a long-grain cultivar of rice. Pest Management Science, v. 77, (5), 2454-2461. https://doi.org/10.1002/ps.6274.
Gustafson, D.I., 1989. Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, v. 8, (4), 339-357. https://doi.org/10.1002/etc.5620080411
He, D.; Han, G.; Zhang, X.; Sun, J.; Xu, Y.; Jin, Q.; Gao, Q., 2022. Oxidative stress induced by methomyl exposure reduces the quality of early embryo development in mice. Zygote, v. 30, (1), 57-64. https://doi.org/10.1017/S0967199421000277.
Health Canada, 2020. Guidelines for Canadian Drinking Water Quality - Summary Table. Health Canada, Canada. (Accessed October 6, 2021) at:. https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html.
Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), 2021. Relatórios de comercialização de agrotóxicos. IBAMA (Accessed October 4, 2021) at:. http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#historicodecomercializacao.
International Agency for Research on Cancer (IARC), 2020a. Monographs on the identification of carcinogenic hazards to humans. IARC (Accessed October 6, 2021) at:. https://monographs.iarc.fr/monographs-available/.
International Agency for Research on Cancer (IARC), 2020b. Report of the advisory group to recommend priorities for the IARC monographs during 2020–2024. IARC (Accessed October 6, 2021) at:. https://www.iarc.who.int/news-events/report-of-the-advisory-group-to-recommend-priorities-for-the-iarc-monographs-during-2020-2024/.
International Union of Pure and Applied Chemistry (IUPAC), 2020. PPDB A to Z Index. IUPAC, University of Hertfordshire (Accessed October 3, 2021) at:. https://sitem.herts.ac.uk/aeru/iupac/atoz.htm.
Khedr, T.; Hammad, A.A.; Elmarsafy, A.M.; Halawa, E.; Soliman, M., 2019. Degradation of some organophosphorus pesticides in aqueous solution by gamma irradiation. Journal of Hazardous Materials, v. 373, 23-28. https://doi.org/10.1016/j.jhazmat.2019.03.011.
Lei, M.; Zhang, L.; Lei, J.; Zong, L.; Li, J.; Wu, Z.; Wang, Z., 2015. Overview of emerging contaminants and associated human health effects. BioMed Research International, v. 2015, 404796. https://doi.org/10.1155/2015/404796.
López-Doval, J.C.; Montagner, C.C.; Alburquerque, A.F.; Moschini-Carlos, V.; Umbuzeiro, G.A.; Pompêo, M., 2017. Nutrients, emerging pollutants and pesticides in a tropical urban reservoir: Spatial distributions and risk assessment. Science of The Total Environment, v. 575, 1307-1324. https://doi.org/10.1016/j.scitotenv.2016.09.210.
Lorenzatto, L.B.; Silva, M.I.G.; Roman Junior, W.A.; Rodrigues Junior, S.A.; Sá, C.A.; Corralo, V., 2020. Exposição de trabalhadores rurais a organofosforados e carbamatos. Brazilian Journal of Environmental Sciences (Online), v. 55, (1), 19-31. https://doi.org/10.5327/z2176-947820200528.
Malakootian, M.; Shahesmaeili, A.; Faraji, M.; Amiri, H.; Martinez, S.S., 2020. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: A systematic review and meta-analysis. Process Safety and Environmental Protection, v. 134, 292-307. https://doi.org/10.1016/j.psep.2019.12.004.
Marchesan, E.; Sartori, G.M.S.; Avila, L.A.; Machado, S.L.O.; Zanella, R.; Primel, E.G.; Macedo, V.R.M.; Marchezan, M.G., 2010. Resíduos de agrotóxicos na água de rios da depressão central do estado do Rio Grande do Sul, Brasil. Ciência Rural, v. 40, (55), 1053-1059. https://doi.org/10.1590/S0103-84782010005000078.
Marchesan, E.; Zanella, R.; Avila, L.A.; Camargo, E.R.; Machado, S.L.O.; Macedo, V.R.M., 2007. Rice herbicide monitoring in two brazilian rivers during the rice growing season. Scientia Agricola, v. 64, (2), 131-137. https://doi.org/10.1590/s0103-90162007000200005.
Mekonen, S.; Argaw, R.; Simanesew, A.; Houbraken, M.; Senaeve, D.; Ambelu, A.; Spanoghe, P., 2016. Pesticide residues in drinking water and associated risk to consumers in Ethiopia. Chemosphere, v. 162, 252-260. https://doi.org/10.1016/j.chemosphere.2016.07.096.
Minitab, 2020. Identificação de outliers. Minitab (Accessed October 4, 2021) at:. https://support.minitab.com/pt-br/minitab/18/help-and-how-to/statistics/basic-statistics/supporting-topics/data-concepts/identifying-outliers/.
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G., 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, v. 6, (7), e1000097. https://doi.org/10.1371/journal.pmed.1000097.
Montagner, C.C.; Sodré, F.F.; Acayaba, R.D.; Vidal, C.; Campestrini, I.; Locatelli, M.A.; Pescara, I.C.; Albuquerque, A.F.; Umbuzeiro, G.A.; Jardim, W.F., 2019. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo state, Brazil. Journal of the Brazilian Chemical Society, v. 30, (3), 614-632. https://doi.org/10.21577/0103-5053.20180232.
Montagner, C.C.; Vidal, C.; Acayaba, R.D.; Jardim, W.F.; Jardim, C.S.F.; Umbuzeiro, G.A., 2014. Trace analysis of pesticides and an assessment of their occurrence in surface and drinking waters from the state of São Paulo (Brazil). Analytical Methods, v. 6, (17), 6668-6677. https://doi.org/10.1039/c4ay00782d.
Monteiro, R.T.R.; Silva, G.H.; Messias, T.G.; Queiroz, S.C.N.; Assalin, M.R.; Cassoli, D.R.; Alves, C.H.R.; Ferreira, A.C.; Blaise, C., 2014. Chemical and ecotoxicological assessments of water samples before and after being processed by a water treatment plant. Ambiente e Água, v. 9, (1), 445-458. https://doi.org/10.4136/ambi-agua.1292.
National Health and Medical Researsch Council (NHMRC), 2021. Australian Drinking Water Guidelines (2011). NHMRC (Accessed October 10, 2021) at:. https://www.nhmrc.gov.au/about-us/publications/australian-drinking-water-guidelines.
National Pesticide Information Center (NPIC), 2020. OSU Extension Pesticide Properties Database. NPIC (Accessed October 8, 2021) at:. http://npic.orst.edu/ingred/ppdmove.htm.
New Zealand, 2020. Guidelines for Drinking-Water Quality Management for New Zealand. New Zealand (Accessed October 10, 2021) at:. https://www.taumataarowai.govt.nz/assets/Uploads/Ministry-of-Health-drinking-water-datasheets/dwg_vol3_datasheets_-_chemical_and_physical_determinands-part_2-3_pesticides.docx.
Olisah, C.; Okoh, O.O.; Okoh, A.I., 2020. Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: A two-decade review. Heliyon, v. 6, (3), e03518. https://doi.org/10.1016/j.heliyon.2020.e03518.
Oliveira, T.J.A.; Rodrigues, W., 2019. Spatial analysis of production structures in Brazilian midlands: Agribusiness clusters. Revista Econômica do Nordeste, v. 50, (1), 153-170.
Pérez, D.J.; Okada, E.; Gerónimo, E.; Menone, M.L.; Aparicio, V.C.; Costa, J.L., 2017. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina. Environmental Toxicology and Chemistry, v. 36, (12), 3206-3216. https://doi.org/10.1002/etc.3897.
Pérez-Lucas, G.; El Aatik, A.; Vela, N.; Fenoll, J.; Navarro, S., 2021. Exogenous organic matter as strategy to reduce pesticide leaching through the soil. Archives of Agronomy and Soil Science, v. 67, (7), 934-945. https://doi.org/10.1080/03650340.2020.1768531.
Pérez-Lucas, G.; Vela, N.; El Aatik, A.; Navarro, S., 2019. Environmental risk of groundwater pollution by pesticide leaching through the soil profile. In: Larramendy, M.L.; Soloneski, S. (Eds.), Pesticides: use and misuse and their impact in the environment. IntenchOpen, London, p. 1-27.
Pignati, W.A.; Souza e Lima, F.A.N.; Lara, S.S.; Correa, M.L.M.; Barbosa, J.R.; Leão, L.H.C.; Pignatti, M.G., 2017. Distribuição espacial do uso de agrotóxicos no Brasil: Uma ferramenta para a vigilância em saúde. Ciência e Saúde Coletiva, v. 22, (10), 3281-3293. https://doi.org/10.1590/1413-812320172210.17742017.
Pinheiro, A.S.; Andrade, J.B., 2009. Development, validation and application of a sdme/gc-fid methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta, v. 79, (5), 1354-1359. https://doi.org/10.1016/j.talanta.2009.06.002.
Porter, S.N.; Humphries, M.S.; Buah-Kwofie, A.; Schleyer, M.H., 2018. Accumulation of organochlorine pesticides in reef organisms from marginal coral reefs in South Africa and links with coastal groundwater. Marine Pollution Bulletin, v. 137, 295-305. https://doi.org/10.1016/j.marpolbul.2018.10.028.
Primel, E.G.; Milani, M.R.; Demoliner, A.; Niencheski, L.F.H.; Escarrone, A.L.V., 2010. Development and application of methods using SPE, HPLC-DAD, LC-ESI-MS/MS and GFAAS for the determination of herbicides and metals in surface and drinking water. International Journal of Environmental Analytical Chemistry, v. 90, (14-15), 1048-1062. https://doi.org/10.1080/03067310902962791.
Rashtbari, Y.; Américo-Pinheiro, J.H.P.; Bahrami, S.; Fazlzadeh, M.; Arfaeinia, H.; Poureshgh, Y., 2020. Efficiency of zeolite coated with zero-valent iron nanoparticles for removal of humic acid from aqueous solutions. Water, Air, and Soil Pollution, v. 231, (10), 514. https://doi.org/10.1007/s11270-020-04872-9.
Rodrigues, A.A.Z.; Neves, A.A.; Queiroz, M.E.L.R.; Oliveira, A.F.; Prates, L.H.F.; Morais, E.H.C., 2018. Optimization and validation of the salting-out assisted liquid-liquid extraction method and analysis by gas chromatography to determine pesticides in water. Eclética Química Journal, v. 43, (1), 11-21. https://doi.org/10.26850/1678-4618eqj.v43.1SI.2018.p11-21.
Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R., 2017. Treatment technologies for emerging contaminants in water: a review. Chemical Engineering Journal, v. 323, 361-380. https://doi.org/10.1016/j.cej.2017.04.106.
Sabarwal, A.; Kumar, K.; Singh, R.P., 2018. Hazardous effects of chemical pesticides on human health–cancer and other associated disorders. Environmental Toxicology and Pharmacology, v. 63, 103-114. https://doi.org/10.1016/j.etap.2018.08.018.
Salomão, G.R.; Américo-Pinheiro, J.H.P.; Isique, W.D.; Torres, N.H.; Cruz, I.A.; Ferreira, L.F.R., 2021. Diclofenac removal in water supply by adsorption on composite low-cost material. Environmental Technology (United Kingdom), v. 42, (13), 2095-2111. https://doi.org/10.1080/09593330.2019.1692078.
Sanford, R.F.; Pierson, C.T.; Crovelli, R.A., 1993. An objective replacement method for censored geochemical data. Mathematical Geology, v. 25, (1), 59-80. https://doi.org/10.1007/BF00890676.
Severo, E.S.; Marins, A.T.; Cerezer, C.; Costa, D.; Nunes, M.; Prestes, O.D.; Zanella, R.; Loro, V.L., 2020. Ecological risk of pesticide contamination in a brazilian river located near a rural area: a study of biomarkers using zebrafish embryos. Ecotoxicology and Environmental Safety, v. 190, 110071. https://doi.org/10.1016/j.ecoenv.2019.110071.
Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; Dar, O.I.; Singh, K.; Jasrotia, S.; Bakshi, P.; Ramakrishnan, M.; Kumar, S.; Bhardwaj, R.; Thukral, A.K., 2019. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, v. 1, 1446. https://doi.org/10.1007/s42452-019-1485-1.
Sharma, K.K.; Tripathy, V.; Mohapatra, S.; Matadha, N.Y.; Pathan, A.R.K.; Sharma, B.N.; Dubey, J.K.; Katna, S.; George, T.; Tayade, A.; Sharma, K.; Gupta, R.; Walia, S., 2021. Dissipation kinetics and consumer risk assessment of novaluron + lambda-cyhalothrin co-formulation in cabbage. Ecotoxicology and Environmental Safety, v. 208, 111494. https://doi.org/10.1016/j.ecoenv.2020.111494
Silva, D.R.O.; Avila, L.A.; Agostinetto, D.; Bundt, A.C.; Primel, E.G.; Caldas, S.S., 2011. Ocorrência de agrotóxicos em águas subterrâneas de áreas adjacentes a lavouras de arroz irrigado. Química Nova, v. 34, (5), 748-752. https://doi.org/10.1590/S0100-40422011000500004.
Silva, D.R.O.; Avila, L.A.; Agostinetto, D.; dal Magro, T.; Oliveira, E.; Zanella, R.; Noldin, J.A., 2009. Pesticides monitoring in surface water of rice production areas in southern Brazil. Ciência Rural, v. 39, (9), 2383-2389. https://doi.org/10.1590/s0103-84782009000900001.
Singh, N.S.; Sharma, R.; Parween, T.; Patanjali, P.K., 2018. Pesticide contamination and human health risk factor. In: Oves, M.; Khan, M.Z.; Ismail, I.M.I. (Eds.), Modern age environmental problems and their remediation. Springer International Publishing, Cham, pp. 49-68.
Souza, L.F.C.B.; Montagner, C.C.; Almeida, M.B.; Kuroda, E.K.; Vidal, C.; Freire, R.L., 2019. Determination of pesticides in the source and drinking waters in Londrina, Paraná, Brazil. Semina: Ciências Agrárias, v. 40, (3), 1153-1164. https://doi.org/10.5433/1679-0359.2019v40n3p1153.
Souza, R.M.; Seibert, D.; Quesada, H.B.; Bassetti, F.J.; Fagundes-Klen, M.R.; Bergamasco, R., 2020. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Safety and Environmental Protection, v. 135, 22-37. https://doi.org/10.1016/j.psep.2019.12.035.
Sposito, J.C.V.; Montagner, C.C.; Casado, M.; Navarro-Martín, L.; Solórzano, J.C.J.; Piña, B.; Grisolia, A.B., 2018. Emerging contaminants in brazilian rivers: Occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere, v. 209, 696-704. https://doi.org/10.1016/j.chemosphere.2018.06.046.
Teixeira, M.F.F.; Silva, A.A.; Nascimento, M.A.; Vieira, L.S.; Teixeira, T.P.M.; Souza, M.F., 2018. Effects of adding organic matter to a red-yellow latosol in the sorption and desorption of tebuthiuron. Planta Daninha, v. 36, 1-8. https://doi.org/10.1590/S0100-83582018360100095.
Tuelher, E.S.; Silva, E.H.; Rodrigues, H.S.; Hirose, E.; Guedes, R.N.C.; Oliveira, E.E., 2018. Area-wide spatial survey of the likelihood of insecticide control failure in the neotropical brown stink bug euschistus heros. Journal of Pest Science, v. 91, (2), 849-859. https://doi.org/10.1007/s10340-017-0949-6.
Uçkun, A.A.; Öz, O.B., 2021. Evaluation of the acute toxic effect of azoxystrobin on non-target crayfish (Astacus leptodactylus eschscholtz, 1823) by using oxidative stress enzymes, atpases and cholinesterase as biomarkers. Drug and Chemical Toxicology, v. 44, (5), 550-557. https://doi.org/10.1080/01480545.2020.1774604.
United Nations Environment Programme (UNEP), 1999. Chemical risk assessment: human risk assessment, environmental risk assessment and ecological risk assessment. UNEP (Accessed October 7, 2021) at:. https://apps.who.int/iris/handle/10665/66398.
United States Environmental Protection Agency (USEPA), 2016a. Contaminant Information Sheets (CISs) for the Final Fourth Contaminant Candidate List (CCL4). USEPA (Accessed October 7, 2021) at:. https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0.
United States Environmental Protection Agency (USEPA), 2016b. Cypermethrin. USEPA (Accessed October 16, 2021) at:. https://iris.epa.gov/static/pdfs/0380_summary.pdf.
United States Environmental Protection Agency (USEPA), 2017. Regulations. USEPA (Accessed 10 October, 2021) at:. https://www.regulations.gov/document/EPA-HQ-OPP-2010-0480-0299.
United States Environmental Protection Agency (USEPA), 2020a. IRIS Assessments. USEPA (Accessed October 8, 2021) at:. https://iris.epa.gov/AtoZ/?list_type=alpha.
United States Environmental Protection Agency (USEPA), 2020b. IRIS Advanced Search. USEPA (Accessed October 8, 2021) at:. https://cfpub.epa.gov/ncea/iris/search/index.cfm.
United States Environmental Protection Agency (USEPA), 2021. National Primary Drinking Water Regulations. USEPA (Accessed October 15, 2021) at:. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.
Vieira, C.E.D.; Costa, P.G.; Lunardelli, B.; Oliveira, L.F.; Cabrera, L.C.; Risso, W.E.; Primel, E.G.; Meletti, P.C.; Fillmann, G.; Martinez, C.B.R., 2016. Multiple biomarker responses in Prochilodus lineatus subjected to short-term in situ exposure to streams from agricultural areas in southern Brazil. Science of the Total Environment, v. 542, part A, 44-56. https://doi.org/10.1016/j.scitotenv.2015.10.071.
Vieira, M.G.; Steinke, G.; Arias, J.L.O.; Primel, E.G.; Cabrera, L.C., 2017. Avaliação da contaminação por agrotóxicos em mananciais de municípios da região sudoeste do Paraná. Revista Virtual de Química, v. 9, (5), 1800-1812. https://doi.org/10.21577/1984-6835.20170105.
Vigiagua, 2020. Revisão da norma de potabilidade da água para consumo humano. Vigiagua (Accessed 16 October, 2021) at:. https://jornalismosocioambiental.files.wordpress.com/2020/04/documento-de-contextualizac3a7c3a3o.pdf.
Von Ameln Lovison, O.; Jank, L.; Souza, W.M.; Guerra, R.R.; Lamas, A.E.; Ballestrin, R.A.C.; Hein, C.S.M.; Silva, T.C.B.; Corção, G.; Martins, A.F., 2021. Identification of pesticides in water samples by solid-phase extraction and liquid chromatography-electrospray ionization mass spectrometry. Water Environment Research, v. 93, (11), 2670-2680. https://doi.org/10.1002/wer.1621.
Wahlbrinck, M.G.; Bica, J.B.; Rempel, C., 2017. Percepção dos agricultores do município de imigrante (RS) sobre os riscos da exposição a agrotóxicos. Brazilian Journal of Environmental Sciences (Online), (44), 72-84. https://doi.org/10.5327/z2176-947820170128.
World Health Organization (WHO), 2017. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, WHO, Geneva (Accessed 14 October, 2021) at:. https://www.who.int/publications/i/item/9789241549950.
Yang, D.; Donovan, S.; Black, B.C.; Cheng, L.; Taylor, A.G., 2018. Relationships between compound lipophilicity on seed coat permeability and embryo uptake by soybean and corn. Seed Science Research, v. 28, (3), 229-235. https://doi.org/10.1017/S096025851800017X.
Zanella, R.; Primel, E.G.; Machado, S.L.O.; Gonçalves, F.F.; Marchesan, E., 2002. Monitoring of the herbicide clomazone in environmental water samples by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chromatographia, v. 55, (9-10), 573-577. https://doi.org/10.1007/BF02492903.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.