Atlantic seabob shrimp as biomonitor of Cu and Zn near port activities: is it really a suitable choice?

Authors

DOI:

https://doi.org/10.5327/Z217694781062

Keywords:

trace elements; stable isotopes; coastal shrimp; environmental monitoring; Western Atlantic.

Abstract

The trace elements concentration in the muscle of the Atlantic seabob shrimp (Xiphopenaeus kroyeri) caught in coastal fishing highlighted copper (Cu) and zinc (Zn), both related to antifouling systems, as the main elements related to the intensity of port activities of southeast Brazil (~20—to 22ºS). The aim of this study is to analyze if the behavior of Cu and Zn in the muscle of this shrimp species is constant among different sampling sites, verifying if the species is suitable as biomonitor for these elements. The shrimps came from fisheries done in 2017 in Vitória, Anchieta, and Farol de São Tomé, southeast Brazil. After sampling, each individual was categorized for gender and maturity stage, measured, and weighted. Bulk muscle samples were freeze-dried for determination of Cu, Zn, and ratios of stable isotopes of carbon (δ13C) and nitrogen (δ15N). The data analysis verified if the concentration of Cu and Zn in male and female shrimps vary among maturity stages and sampling sites, and how the concentration of Cu and Zn is related to shrimps foraging area and/or trophic position. Both bioaccumulation and growth dilution occurred, but not in the same way for genders and sampling sites, with Cu showing more variability. Relationships between elements and shrimps foraging area and trophic position did not show a clear trend among the sampling sites. Regression models indicated moderate relationships, explaining 51% (Cu) and 60% (Zn) of the association with the foraging area in Anchieta, but up to 8% in Vitória and Farol de São Thomé. For the trophic position, the models explained 33% (Cu) and 34% (Zn) in Anchieta and up to 14% in Vitória and Farol de São Thomé. The results showed that the utilization of this shrimp species as biomonitor of marine coastal environments near port activities to monitoring the levels of Cu and Zn is not a suitable choice, at least in the spatial scale considered by this study.

Downloads

Download data is not yet available.

References

Ali, H.; Khan, E., 2019. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs – Concepts and implications for wildlife and human health. Human Ecology and Risk Assessment, v. 25, (6), 1353-1376. https://doi.org/10.1080/10807039.2018.1469398.

Amara, I.; Miled, W.; Slama, R.B.; Ladhari, N., 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environmental Toxicology and Pharmacology, v. 57, 115-130. https://doi.org/10.1016/j.etap.2017.12.001.

Asante, K.A.; Agusa, T.; Mochizuki, H.; Ramu, K.; Inoue, S.; Kubodera, T.; Takahashi, S.; Subramanian, A.; Tanabe, S., 2008. Trace elements and stable isotopes (d13C and d15N) in shallow and deep-water organisms from the East China Sea. Environmental Pollution, v. 156, (3), 862-873. https://doi.org/10.1016/j.envpol.2008.05.020.

Bissaro, F.G.; Gomes Jr., J.L.; Di Beneditto, A.P.M., 2013. Morphometric variation in the shape of the cephalothorax of shrimp Xiphopenaeus kroyeri on the east coast of Brazil. Journal of the Marine Biological Association of the United Kingdom, v. 93, (3), 683-691. https://doi.org/10.1017/s0025315412000409.

Boos, H.; Costa, R.C.; Santos, R.A.F.; Dias-Neto, J.; Severino-Rodrigues, E.; Rodrigues, L.F.; D’Incao, F.; Ivo, C.T.C.; Coelho, P.A., 2016. Avaliação dos camarões peneídeos (Decapoda: Penaeidae). In: Pinheiro, M.; Boos, H. (Eds.), Livro vermelho dos crustáceos do Brasil: avaliação 2010-2014. Sociedade Brasileira de Carcinologia, Porto Alegre, pp. 300-317.

Branco, J.O.; Moritz-Júnior, H.C., 2001. Alimentação natural do camarão sete-barbas (Xiphopenaeus kroyeri), na Armação do Itapocoroy, Penha, SC. Revista Brasileira de Zoologia, v. 18, (1), 53-61. https://doi.org/10.1590/S0101-81752001000100004.

Campos, B.R.; Dumont, F.C.; D’Incao F.; Branco, J.O., 2009. Ovarian development and length at first maturity of the sea‑bob‑shrimp Xiphopenaeus kroyeri (Heller) based on histological analysis. Nauplius, v. 17, (1), 9-12.

Dafforn, K.A.; Lewis, J.A.; Johnston, E.L., 2011. Antifouling strategies: History and regulation, ecological impacts and mitigation. Marine Pollution Bulletin, v. 62, (3), 453-465. http://doi.org/10.1016/j.marpolbul.2011.01.012.

Di Beneditto, A.P.M.; Ferreira, K.A.; Oliveira, B.C.V.; Rezende, C.E., 2020. Trace elements in commercial shrimps caught near port activities in SW Atlantic Ocean and human health risk assessment on consumption. Reginal Studies in Marine Science, v. 39, 101449. https://doi.org/10.1016/j.rsma.2020.101449.

Di Leonardo, R.; Mazzola, A.; Cundy, A.B.; Tramati, C.D.; Vizzini, S., 2017. Trace element storage capacity of sediments in dead Posidonia oceanica mat from a chronically contaminated marine ecosystem. Environmental Toxicology and Chemistry, v. 36, (1), 49-58. https://doi.org/10.1002/etc.3539.

Ferreira, K.A.; Braga, A.A.; Di Beneditto, A.P.M., 2021. Can stable isotopes be applied to determine shrimp stocks origin in SE Brazil? An approach for utilization in fishery management. Ocean & Coastal Management, v. 205, 105500. https://doi.org/10.1016/j.ocecoaman.2020.105500.

Food and Agriculture Organization – FAO. 2018. The state of world fisheries and aquaculture 2018 - Meeting the sustainable development goals. License: CC BY-NC-SA 3.0 IGO. FAO, Rome (Accessed January, 2021) at: http://www.fao.org/3/i9540en/i9540en.pdf.

Fry, B., 2008. Stable Isotope Ecology. Springer-Verlag, New York, 308 pp.

Fry, B.; Carter, J.F.; Tinggi, U.; Arman, A.; Kamal, M.; Metian, M.; Waduge, V.A.; Yaccup, R.B., 2016. Prawn biomonitors of nutrient and trace metal pollution along Asia-Pacific coastlines. Isotopes in Environmental and Health Studies, v. 52, (6), 619-632. https://doi.org/10.1080/10256016.2016.1149481.

Hartnoll, R.G., 1982. Growth. In: Bliss, D. (Ed.), The Biology of Crustacea, 2. Academic Press, New York, pp. 111-185.

Hatje, V., 2016. Biomonitors. In: Kennish, M.J. (Ed.), Encyclopedia of Estuaries. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. pp. 83-84. https://doi.org/10.1007/978-94-017-8801-4_140.

Jardim, L.P.; Fernandes, L.P.; Di Beneditto, A.P.M.; Silva, A.C.; Keunecke, K.A., 2011. Growth and recruitment of the Atlantic seabob shrimp, Xiphopenaeus kroyeri (Heller, 1862) (Decapoda, Penaeidae), on the coast of Rio de Janeiro, southeastern Brazil. Crustaceana, v. 84, 12-13, 1465-1480. https://doi.org/10.1163/156854011X605765.

Karimi, R.; Chen, C.Y.; Pickhardt, P.C.; Fisher, N.S.; Folt, C.L., 2007. Stoichiometric controls of mercury dilution by growth. Proceedings of the National Academy of Sciences of the United States of America, v. 104, 18, 7477-7482. https://doi.org/10.1073/pnas.0611261104.

Karimi, R.; Fisher, N.S.; Folt, C.L., 2010. Multielement Stoichiometry in aquatic invertebrates: When growth dilution matters. American Naturalist, v. 176, (6), 699-709. https://doi.org/10.1086/657046.

Khitalishvili, K., 2016. Monte Carlo Simulation in R: Basic Example (Accessed January, 2021) at: https://rpubs.com/Koba/Monte-Carlo-Basic-Example.

Lacerda, D.; Vergílio, C.S.; Silva Souza, T.; Viana Costa, L.H.; Rangel, T.P.; Vaz de Oliveira, B.C.; Ribeiro de Almeida, D.Q.; Pestana, I.A.; Almeida, M.G.; Rezende, C.E., 2020. Comparative metal accumulation and toxicogenetic damage induction in three neotropical fish species with distinct foraging habits and feeding preferences. Ecotoxicoly and Environmental Safety, v. 195, 110449. https://doi.org/10.1016/j.ecoenv.2020.110449.

Lenth, R., 2019. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3.01 (Accessed January, 2021) at: https://CRAN.R-project.org/package=emmeans.

Liu, H.; Liu, G.; Yuan, Z.; Ge, M.; Wang, S.; Liu, Y.; Da, C., 2019. Occurrence, potential health risk of heavy metals in aquatic organisms from Laizhou Bay, China. Marine Pollution Bulletin, v. 140, 388-394. https://doi.org/10.1016/j.marpolbul.2019.01.067.

Liu, Y.; Liu, G.; Yuan, Z.; Liu, H.; Lam, P.K.S., 2018. Heavy metals (As, Hg and V) and stable isotope ratios (δ13C and δ15N) in fish from Yellow River Estuary, China. Science of the Total Environment, v. 613-614, 462-471. http://dx.doi.org/10.1016/j.scitotenv.2017.09.088.

Madigan, D.J.; Litvin, S.Y.; Popp, B.N.; Carlisle, A.B.; Farwell, C.J.; Block, B.A., 2012. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin (Thunnus orientalis). PLoS One, v. 7, 11, e49220. http://dx.doi.org/10.1371/journal.pone.0049220.

Maurya, P.K.; Malik, D.S.; Yadav, K.K.; Kumar, A.; Kumar, S.; Kamyab, H., 2019. Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicololy Reports, v. 6, 472-481. https://doi.org/10.1016/j.toxrep.2019.05.012.

Nikolaou, M.; Neofitou, N.; Skordas, K.; Castritsi-Catharios, I.; Tziantziou, L., 2014. Fish farming and anti-fouling paints: a potential source of Cu and Zn in farmed fish. Aquaculture Environmental Interactions, v. 5, 163-171. http://dx.doi.org/10.3354/aei00101.

Post, D.M.; Layman, C.A.; Arrington, D.A.; Takimoto, G.; Quattrochi, J.; Montaña, C.G. 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, v. 152, 179-189. http://dx.doi.org/10.1007/s00442-006-0630-x.

Pourang, N.; Dennis, J.H.; Ghourchian, H., 2004. Tissue distribution and redistribution of trace elements in shrimp species with the emphasis on the roles of metallothionein. Ecotoxicology, v. 13, 519-533. https://doi.org/10.1023/B:ECTX.0000037189.80775.9c.

Rainbow, P.S., 2002. Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, v. 120, (3), 497-507. https://doi.org/10.1016/S0269-7491(02)00238-5.

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (Accessed January, 2021) at: https://www.R-project.org/

Signorell, A., 2020. DescTools: Tools for descriptive statistics. R package version 0.99.34 (Accessed January, 2021) at: https://cran.r-project.org/package=DescTools.

Skoog, D.A.; Leary, J.L., 1992. Principles of instrumental analysis. Harcourt Brace College Publishers, Orlando, 220 pp.

Stentiford, G.D.; Feist, S.W., 2005. A histopathological survey of shore crab (Carcinus maenas) and brown shrimp (Crangon crangon) from six estuaries in the United Kingdom. Journal of Invertebrates Pathology, v. 88, 2, 136-146. http://doi.org/10.1016/j.jip.2005.01.006.

Thomsen, V.; Schatzlein, D.; Mercuro, D., 2003. Limits of detection in spectroscopy. Spectroscopy, v. 18, 12, 112-114.

Venables, W.N.; Ripley, B.D., 2002. Modern Applied Statistics with S. Springer-Verlag, New York, 495 pp.

Willems, T.; De Backer, A.; Kerkhove, T.; Dakriet, N. N.; De Troch M.; Vincx, M.; Hostens, K., 2016. Trophic ecology of Atlantic sea-bob shrimp Xiphopenaeus kroyeri: Intertidal benthic microalgae support the subtidal food web off Suriname. Estuarine Coastal and Shelf Science, v. 182, part A, 146-157. http://dx.doi.org/10.1016/j.ecss.2016.09.015.

Yilmaz, A.B.; Yilmaz, L., 2007. Influences of sex and seasons on levels of heavy metals in tissues of green tiger shrimp (Penaeus semisulcatus de Hann, 1844). Food Chemistry, v. 101, (4), 1664-1669. http://dx.doi.org/10.1016/j.foodchem.2006.04.025.

Downloads

Published

2021-11-18

How to Cite

Di Beneditto, A. P. M., Ferreira, K. de A., Vaz de Oliveira, B. C., de Rezende, C. E., & Pestana, I. A. (2021). Atlantic seabob shrimp as biomonitor of Cu and Zn near port activities: is it really a suitable choice?. Revista Brasileira De Ciências Ambientais, 56(4), 665–672. https://doi.org/10.5327/Z217694781062