Quali-quantitative characterization of biogas with the temporal behavior of organic load on wastewater treatment plant with upflow anaerobic sludge blanket reactors through measurement in full‑scale systems
DOI:
https://doi.org/10.5327/Z217694781059Keywords:
biogas composition; biogas flow; chemical oxygen demand probe; sewage; ultrasonic flowmeter.Abstract
This study aims to present the time behavior of wastewater flow parameters, organic matter, biogas flow, biogas composition, and its relations, measured through online sensors, in a municipal wastewater treatment plant (WWTP) operating full-scale upflow anaerobic sludge blanket (UASB) reactors, installed in the south of Brazil. WWTP has online measurement devices to evaluate some physicochemical variables of the sewage and the biogas. The COD analyzer (UV– Vis probe), ultrasonic flow meter, biogas flow meter, and biogas composition analyzer were the equipment used. The monitoring occurred for two time periods each of 72 h and one time period for 48 h in the year 2018. Data were checked with descriptive statistics, data independence was checked through the autocorrelation Box– Ljung test, normality behavior was checked with several tests (Shapiro– Wilk, Kolmogorov–Smirnov, Lilliefors, Anderson–Darling, D’Agostino K2, and Chen–Shapiro), and Spearman’s correlation coefficient was used to evaluate the correlations among the parameters. The mean sewage flow was 345 ± 120 L.s-1; removed organic load was, in average, 48%; biogas quality values were 82.32% ± 3.62% v/v (CH4), 2.66% ± 1.19% v/v (CO2), and 3453 ± 1268 ppm (H2S); and the production per capita obtained was 4.51 ± 1.65 NL.hab-1.d-1. It was estimated an electric power generation of 3118.6 kWh.d-1, which is equivalent to an installed power of 130 KW. The behavior of removed organic load and biogas flow (Nm3.h-1), produced in the treatment plant, showed variable, periodic, and nonstationary time behavior.
Downloads
References
Adefisoye, J.O.; Golam Kibria, B.M.; George, F., 2016. Performances of Several Univariate Tests of Normality: An Empirical Study. Journal of Biometrics & Biostatistics, v. 7, (4), 322. https://doi.org/10.4172/2155-6180.1000322.
Aisse, M.M.; Lobato, M.B.; Jürgensen, D.; Além Sobrinho, P., 2002. Tratamento de efluentes anaeróbios com descarga de lodo aeróbio em reatores UASB (Treatment of Anaerobic Effluents with Discharge of Aerobic Sludge to the UASB Reactor). In: VII Taller e Simpósio Latino Americano sobre Digestion Anaerobia. Merida, Mexico.
Associação Brasileira de Normas Técnicas – ABNT, 2011. NBR 12209. Elaboração de projetos hidráulico-sanitários de estações de tratamento de esgotos sanitários. ABNT, Rio de Janeiro.
Bilotta, P.; Ross, B.Z.L., 2016. Estimativa de geração de energia e emissão evitada de gás de efeito estufa na recuperação de biogás produzido em estação de tratamento de esgotos. Revista Engenharia Sanitária e Ambiental, v. 21, (2), 275-282. https://doi.org/10.1590/S1413-41522016141477.
Brasil. 2017. Guia técnico de aproveitamento energético de biogás em estações de tratamento de esgoto (Technical guide on the use of biogas energy in wastewater treatment plants). 2ª ed. Ministério das Cidades, Brasília, 183 pp.
Cabral, B.G.C., Chernicharo, C.A.L., Platzer, C.J., Barjenbruch, M., Belli Filho, P., 2017a. Evaluation of biogas production and energy recovery potential in 5 full-scale WWTPs with UASB reactors. Chemical Engineering and Chemical Process Technology, v. 3, (3), 1043.
Cabral, B.G.C.; Possetti G.R.; Platzer, C.J.; Barjenbruch, M.; Chernicharo, C.A.L., 2017b. Avaliação da produção de biogás em reatores UASB em escala plena tratando esgoto doméstico: correlações a partir de medições em tempo real. In: 29º Congresso Brasileiro de Engenharia Sanitária e Ambiental.
Chernicharo, C.A.L.; van Haandel, A.; Aisse, M.M.; Cavalcanti, P., 1999. Reatores anaeróbios de manta de lodo. (Anaerobic Sludge Blanket Reactors). In: Campos, J.R. (Coord.). PROSAB. ABES, Rio de Janeiro, pp. 55-198.
Chernicharo, C.A.L.; van Lier, J.B.; Noyola, A.; Bressani Ribeiro, T., 2015. Anaerobic sewage treatment: state of the art, constraints and challenges. Reviews in Environmental Science and Bio/Technology, v. 14, 649-679. https://doi.org/10.1007/s11157-015-9377-3.
Gomes, E.C.; Dias, I.A.; Ferreira, L.R.A.; Otto, R.B.; Moreira, H.C.; Possetti, G.R.C.; Wagner, L.G.; Junior, J.A.S.; Zeni, A.L., 2017. Guia técnico sobre geração distribuída de energia elétrica por biogás em ETEs/Probiogás. GIZ/Ministério das Cidades, Brasília.
Hernandez, O.A.D., 2019. Avaliação de sistemas de medição para controle de processo em tempo real em uma estação de tratamento de esgoto sanitário que utiliza reatores UASB. Doctoral Thesis, Programa de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental, Setor de Tecnologia, Universidade Federal do Paraná, Curitiba. Retrieved 2021-09-29, from http://www.prppg.ufpr.br/ppgerha/es/teses.
Hernandez, O.A.D.; Lisboa, A.M.; Cantão, M.P.; Possetti, G.R.C.; Aisse, M.M., 2018. Assessment of an in situ real time UV/Vis based spectrometry system for chemical oxygen demand measurement in a wastewater anaerobic treatment reactor. In: Matsumura-Tundisi, T.; Tundisi, J.G. (Eds.), Water Resources Management. Scienza, São Carlos, pp. 167-180.
Intergovernmental Panel on Climate Change – IPCC. 2014. Climate change: mitigation of climate change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Langergraber, G.; Fleischmann, N.; Hofstädter, F., 2003. A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater. Water Science & Technology, v. 47, (2), 63-71. https://doi.org/10.2166/wst.2003.0086.
Lettinga, G.; Roersma, R.; Grin P., 1983. Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnology and Bioengineering, v. 25, (7), 1701-1723. https://doi.org/10.1002/bit.260250703.
Ljung, G.M.; Box, G.E.P., 1978. On a measure of lack of fit in time series models. Biometrika, v. 65, (2), 297-303. https://doi.org/10.2307/2335207.
Lobato, L.C.S.; Chernicharo, C.A.L.; Souza, C.L., 2012. Estimates of methane loss and energy recovery potential in anaerobic reactors treating domestic wastewater. Water Science & Technology, v. 66, (12), 2745-2753. https://doi.org/10.2166/wst.2012.514.
Mainardis, M.; Buttazzoni, M.; Goi, D., 2020. Up-flow anaerobic sludge blanket (UASB) technology for energy recovery: a review on state-of-the-art and recent technological advances. Bioengineering, v. 7, (2), 43. https://dx.doi.org/10.3390%2Fbioengineering7020043.
Metcalf, L.; Eddy, H.P., 2016. Wastewater engineering: treatment and resource recovery. 5ª ed. AMGH, Porto Alegre.
Mota, F.; Monteiro, L.; Silva, W.; Borges, D., 2019. Climatic characteristics and hourly variations in biogas concentration in a sanitary landfill in northeast Brazil. Revista Brasileira de Ciências Ambientais (Online), (54), 1-12. https://doi.org/10.5327/Z2176-94782190077.
Noyola, A.; Morgan-Sagastume, J.M.; Lopez-Hernandez, J.E., 2006. Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Reviews in Environmental Science and Bio/Technology, (5), 93-114. https://doi.org/10.1007/s11157-005-2754-6.
Noyola, A.; Padilla-Rivera, A.; Morgan-Sagastume, J.M.; Guereca, L.P.; Hernandez-Padilla, F., 2012. Typology of municipal wastewater treatment technologies in Latin America. Clean Soil Air Water, v. 40, (9), 926-932. https://doi.org/10.1002/clen.201100707.
Oliveira, S.C.; Von Sperling, M., 2011. Performance evaluation of different wastewater treatment technologies operating in a developing country. Journal of Water, Sanitation and Hygiene for Development, v. 1, (1), 37-56. https://doi.org/10.2166/washdev.2011.022.
Pagliuso, J.; Regattieri, C., 2008. Estudo do aproveitamento da energia do biogás proveniente da incineração do chorume para a geração de eletricidade. Revista Brasileira de Ciências Ambientais (Online), (10), 32-38. Retrieved 2021-05-15, from: http://www.rbciamb.com.br/index.php/Publicacoes_RBCIAMB/article/view/428.
Pinheiro, L.; Cattanio, J. H.; Imbiriba, B.; Castellon, S.; Elesbão, S.; Ramos, J., 2019. Carbon dioxide and methane flux measurements at a large unsanitary dumping site in the amazon region. Revista Brasileira de Ciências Ambientais (Online), (54), 13-33. https://doi.org/10.5327/Z2176-947820190021.
Possetti, G.R.C.; Jasinski, V.P.; Mesquita, N.C.; Kriguel, K.; Carneiro, C., 2013. Medições em tempo real do biogás produzido em reatores UASB alimentados com esgoto doméstico. In: 27º Congresso Brasileiro de Engenharia Sanitária e Ambiental, Goiânia.
Possetti, G.R.C.; Rietow, J.C.; Cabral, C.B.G.; Moreira, H.C.; Platzer, C.; Ribeiro, T.B.; Chernicharo, C.A.L., 2019. Energy recovery from biogas in UASB reactors treating sewage. In: Chernicharo, C.A.L.; Ribeiro, T.B. (Eds.), Anaerobic reactors for sewage treatment: design, construction and operation. IWA Publishing, pp. 194-236.
Possetti, G.R.C.; Rietow, J.C.; Costa, F.J.O.G.; Wagner, L.G.; Lobato, L.C.S.; Ribeiro, T.B.; Melo, D.F.; Reis, J.A.; Chernicharo, C.A.L., 2018. Contribuição para o aprimoramento de projeto, construção e operação de reatores UASB aplicados ao tratamento de esgoto sanitário – Parte 5: Biogás e emissões fugitivas de metano. Revista DAE, v. 66, (214), 73-89. https://doi.org/10.4322/dae.2018.042.
Razali, N.M.; Wah, Y.B., 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, v. 2, (1), 21-33.
Rosenfeldt, S.; Cabral, C.B.G.; Platzer, C.J.; Hoffmann, H.; Araujo, R.A., 2015. Avaliação da viabilidade econômica do aproveitamento energético do biogás por meio de motor-gerador em uma ETE. In: 28º Congresso Brasileiro de Engenharia Sanitária e Ambiental.
Shapiro, S.S.; Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, v. 52, (3-4), 591-611. https://doi.org/10.2307/2333709.
Soreanu, G.; Béland, M.; Falletta, P.; Edmonson, K.; Svoboda, L.; Al-Jamal, M.; Seto, P., 2011. Approaches concerning siloxane removal from biogas: a review. Canadian Biosystems Engineering, v. 53, 8.1-8.18.
Venkatesch, G.; Elmi, R.A., 2013. Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: case study of Bekkelaget WWTP in Oslo (Norway). Energy, 58, 220-235. https://doi.org/10.1016/j.energy.2013.05.025.
Von Sperling, M.; Chernicharo, C.A.L., 2005. Biological wastewater treatment in warm climate regions. IWA Publishing, London, 1452 pp.
Von Sperling, M.; Oliveira, S.M.A.C., 2009. Comparative performance evaluation of full-scale anaerobic and aerobic wastewater treatment processes in Brazil. Water Science & Technology, v. 59, (1), 15-22. https://doi.org/10.2166/wst.2009.841.
Waiss, T.C.F.; Possetti, G.R.C., 2015. Influência de eventos de chuva na produção de biogás de reatores anaeróbios alimentados com esgoto doméstico. In: 28º Congresso Brasileiro de Engenharia Sanitária e Ambiental, Rio de Janeiro.
Water Environment Federation – WEF. 1994. Preliminary treatment for wastewater facilities. Manual of Practice OM-2. WEF, Alexandria.
Water Environment Federation – WEF. 1998. Design of municipal wastewater treatment plants. Manual of Practice n. 8, ASCE Manual and Report on Engineering Practice, 76. WEF, Alexandria.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.