Effects of a recent urbanization event on coastal groundwater in the southeastern coast of Brazil: a case study of the Macaé municipality

Authors

DOI:

https://doi.org/10.5327/Z2176-94781044

Keywords:

Groundwater; Contamination; Metal; Escherichia coli; salinization

Abstract

Coastal groundwater is extremely vulnerable to land-based human activities and seawater intrusion. In Brazil, a developing country, several coastal cities are undergoing recent urbanization with no planning, giving rise to problems such as groundwater overexploitation, sanitation, and chemical contamination. This study provides seasonal and spatial groundwater chemical and microbiological characterization of a recently urbanized coastal region, discussing contamination and salinization. The recent urbanization event affected both shallow and deep wells represented by the extensive presence of Escherichia coli on groundwater and nitrate, ammonium, arsenic, and lead (NO3-, NH4+, As and Pb) levels above groundwater safety guidelines. In contrast, iron and manganese (Fe and Mn) concentrations above the safety limit were associated with lithological enrichment, but might also restrict groundwater consumption. In addition to chemical and microbiological contamination, salinization of coastal aquifers did not pose a threat in this shoreline, but brackish groundwater was found in one well influenced by a coastal lagoon sandbar opening that allowed seawater to enter the aquifer.

Downloads

Download data is not yet available.

References

American Public Health Association (APHA), 2018. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, 541 pp.

Barbosa, G.R.; Silva Jr., G.C., 2005. Potenciometria e fluxos subterrâneos subterrâneas do aquífero aluvionar na bacia inferior do Rio Macaé. Anuário do Instituto de Geociências, v. 28, 2102-2115.

Barreto, A.; Monsores, A.; Leal, A.; Pimentel, J., 2000. Hidrogeologia do estado do Rio de Janeiro. Companhia de Pesquisa de Recursos Minerais, Brasília.

Bento, E.S., 2006. Hydrochemistry and hydrogeological model of groundwater from the Lower Macaé River, Macaé municipality-RJ. Master’s Dissertation, Instituto de Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro. Retrieved 2020-12-03, from https://revistas.ufrj.br/index.php/aigeo/article/view/6682/5279

Bertrand, G.; Hirata, R.; Pauwels, H.; Cary, L.; Petelet-Giraud, E.; Chatton, E.; Aquilina, L.; Labasque, T.; Martins, V.; Montenegro, S.; Batista, J.; Aurouet, A.; Santos, J.; Bertolo, R.; Picot, G.; Franzen, M.; Hochreutener, R.; Braibant, G., 2016. Groundwater contamination in coastal urban areas: anthropogenic pressure and natural attenuation processes. Example of Recife (PE State, NE Brazil). Journal of Contaminant Hydrology, v. 192, 165-180. https://doi.org/10.1016/j.jconhyd.2016.07.008.

Boumaiza, L.; Chesnaux, R.; Drias, T.; Walter, J.; Huneau, F.; Garel, M.; Knoeller, K.; Stumpp, C., 2020. Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Science of the Total Environment, v. 746, 141203. https://doi.org/10.1016/j.scitotenv.2020.141203.

Brasil. Conselho Nacional do Meio Ambiente (CONAMA), 2008. Resolução CONAMA nº 396, de 3 de abril de 2008. Diário Oficial da União, Brasília.

Brasil. Fundação Nacional de Saúde (FUNASA), 2013. Manual prático de análise de água, 4. ed. Funasa, Brasília.

Brasil. Ministério da Saúde, 2017. Anexo XX da Portaria de Consolidação nº 5, ou PCR nº 5, de 28 de setembro de 2017. Diário Oficial de União, Brasília.

Cary, L.; Petelet-Giraud, E.; Bertrand, G.; Kloppmann, W.; Aquilina, L.; Martins, V.; Hirata, R.; Montenegro, S.; Pauwels, H.; Chatton, E.; Franzen, M.; Aurouet, A., The Team, 2015. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): a multi-isotope approach. The Science of Total Environment, v. 530-531, 411-429. https://doi.org/10.1016/j.scitotenv.2015.05.015.

Chidambaram, S.; Sarathidasan, J.; Srinivasamoorthy, K.; Thivya, C.; Thilagavathi, R.; Prasanna, M.; Singaraja, C.; Nepolian, M., 2018. Assessment of hydrogeochemical status of groundwater in a coastal region of Southeast coast of India. Applied Water Science, v. 8, 27. https://doi.org/10.1007/s13201-018-0649-2.

Companhia de Pesquisa de Recursos Minerais (CPRM), 2012. Geologia e recursos minerais da folha de Macaé. SF.24-Y-A-I – Brasil. CPRM, Brasil.

Das, K.; Mukherjee, A., 2019. Depth-dependent groundwater response to coastal hydrodynamics in the tropical, Ganges River mega-delta front (the Sundarbans): Impact of hydraulic connectivity on drinking water vulnerability. Journal of Hydrology, v. 575, 499-512. https://doi.org/10.1016/j.jhydrol.2019.05.053.

Engström, E.; Balfors, B.; Mortberg, U.; Thunvik, R.; Gaily, T.; Mangold, M., 2015. Prevalence of microbiological contaminants in groundwater sources and risk factor assessment in Juba, South Sudan. The Science of Total Environment, v. 515-516, 181-187. https://doi.org/10.1016/j.scitotenv.2015.02.023.

Ferrer, N.; Folch, A.; Masó, G.; Sanchez, S.; Sanchez-Vila, X., 2020. What are the main factors influencing the presence of fecal bacteria pollution in groundwater systems in developing countries? Journal of Contaminant Hydrology, v. 228, 103556. https://doi.org/10.1016/j.jconhyd.2019.103556.

Genter, F.; Willetts, J.; Foster, T., 2021. Fecal contamination of groundwater self-supply in low- and middle-income countries: systematic review and meta-analysis. Water Research, v. 201, 117350. https://doi.org/10.1016/j.watres.2021.117350.

Godoy, J.; Souza, T.A.; Godoy, M.; Moreira, I.; Carvalho, Z.; Lacerda, L.; Fernandes, F., 2013. Groundwater and surface water quality in a coastal bay with negligible fresh groundwater discharge: Arraial do Cabo, Brazil. Marine Chemistry, v. 156, 85-97. https://doi.org/10.1016/j.marchem.2013.05.004.

Gomes, O.; Marques, E.; Kütter, V.; Aaires, J.; Travie, Y.; Silva-Filho, E.V., 2019. Origin of salinity and hydrogeochemical features of porous aquifers from northeastern Guanabara Bay, Rio de Janeiro, SE – Brazil. Journal of Hydrology: Regional Studies, v. 22, 100601. https://doi.org/10.1016/j.ejrh.2019.100601.

Graaf, I.; Gleeson, T.; Van Beek, L.; Sutanudjaja, E.; Bierkens, M., 2019. Environmental flow limits to global groundwater pumping. Nature, v. 574, 90-94. https://doi.org/10.1038/s41586-019-1594-4.

Güller, C.; Kurt, M.; Alpaslan, M.; Akbulut, C., 2012. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, v. 414-415, 435-451. https://doi.org/10.1016/j.jhydrol.2011.11.021.

Hoover, D.; Odigie, K.; Swarzenski, P.; Barnard, P., 2017. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA. Journal of Hydrology: Regional Studies, v. 11, 234-249. https://doi.org/10.1016/j.ejrh.2015.12.055.

Hou, Q.; Zhang, Q.; Huang, G.; Liu, C.; Zhang, Y., 2020. Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, south China. The Science of Total Environment, v. 701, 134777. https://doi.org/10.1016/j.scitotenv.2019.134777.

Hu, K.; Awange, J.; Khandu; Forrotan, E.; Gonçalves, R.; Fleming, K., 2017. Hydrogeological characterization of groundwater over Brazil using remotely sensed and model products. The Science of Total Environment, v. 599-600, 372-386. https://doi.org/10.1016/j.scitotenv.2017.04.188.

Huang, G.; Zhang, M.; Liu, C.; Li, L.; Chen, Z., 2018. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces. The Science of Total Environment, v. 635, 913-925. https://doi.org/10.1016/j.scitotenv.2018.04.210.

Islam, A.; Siddiqua, M.; Zahid, A.; Tasnim, S.; Rahma, M., 2020. Drinking appraisal of coastal groundwater in Bangladesh: An approach of multi-hazards towards water security and health safety. Chemosphere, v. 255, 126933. https://doi.org/10.1016/j.chemosphere.2020.126933.

Li, S.-L.; Liu, C.Q.; Li, J.; Liu, X.; Chetelat, B.; Wang, B.; Wang G.F., 2010. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach. Environmental Science and Technology, v. 44, (5), 1573-1578. https://doi.org/10.1021/es902670n.

Lins-de-Barros, F.M., 2017. Integrated coastal vulnerability assessment: a methodology for coastal cities management integrating socioeconomic, physical and environmental dimensions – case study of Região dos Lagos, Rio de Janeiro, Brazil. Ocean and Coastal Management, v. 149, 1-11. https://doi.org/10.1016/j.ocecoaman.2017.09.007.

Lutterodt, G.; Miyittah, M.; Addy, B.; Ansa, E.; Takase, M., 2021. Groundwater pollution assessment in a coastal aquifer in Cape Coast, Ghana. Heliyon, v. 7, (4), e06751. https://doi.org/10.1016/j.heliyon.2021.e06751.

Machiwal, D.; Jha, M.; Singh, V.; Mohan, C., 2018. Assessment and mapping of groundwater vulnerability to pollution: current status and challenges. Earth-Science Review, v. 185, 901-927. https://doi.org/10.1016/j.earscirev.2018.08.009.

McDonough, L.; O’Carroll, D.; Meredith, K.; Andersen, M.; Brügger, C.; Huang, H.; Rutlidge, H.; Behnke, M.; Spencer, R.; McKenna, A.; Marjo, C.; Oudone, P.; Baker, A., 2020. Changes in groundwater dissolved organic matter character in a coastal sand aquifer due to rainfall recharge. Water Research, v. 169, 115201. https://doi.org/10.1016/j.watres.2019.115201.

Mirlean, N.; Andrus, V.; Baisch, P.; Griep, G.; Casartelli, M., 2003. Arsenic pollution in Patos Lagoon estuarine sediments, Brazil. Marine Pollution Bulletin, v. 46, (11), 1480-1484. https://doi.org/10.1016/S0025-326X(03)00257-1.

Mirlean, N.; Baisch, P.; Diniz, D., 2014. Arsenic in groundwater of the Paraiba do Sul delta, Brazil: an atmospheric source? The Science of Total Environment, v. 482-483, 148-156. https://doi.org/10.1016/j.scitotenv.2014.02.138.

Molisani, M.; Esteves, F.; Lacerda, L.; Rezende, C., 2013. Emissões naturais e antrópicas de nitrogênio, fósforo e metais na bacia do Rio Macaé (Macaé, RJ, Brasil) sob influência da exploração de petróleo e gás na Bacia de Campos. Química Nova, v. 36, (1), 27-33. https://doi.org/10.1590/S0100-40422013000100006.

Paim, R.; Reginato, P.; Michalski, E.; Lanzer, R.; Dutra, T., 2018. Análise hidroquímica e da aplicação de diferentes métodos de avaliação da qualidade da água subterrânea em aquíferos costeiros em Osório – RS. Águas Subterrâneas, v. 32, (3), 337-345. https://doi.org/10.14295/ras.v32i3.29155.

Samantara, M.; Padhi, R.; Sowmya, M.; Kumaran, P.; Satpathy, K., 2017. Heavy metal contamination, major ion chemistry and appraisal of the groundwater status in coastal aquifer, Kalpakkam, Tamil Nadu, India. Groundwater for Sustainable Development, v. 5, 49-58. https://doi.org/10.1016/j.gsd.2017.04.001.

Santucci, L.; Carol, E.; Borzi, G.; García, M., 2017. Hydrogeochemical and isotopic signature of surface and groundwater in a highly industrialized sector of the Rio de la Plata coastal plain (Argentina). Marine Pollution Bulletin, v. 120, (1-2), 387-395. https://doi.org/10.1016/j.marpolbul.2017.05.007.

Shi, X.; Wang, Y.; Jiao, J.; Zhong, J.; Wen, H.; Dong, R., 2018. Assessing major factors affecting shallow groundwater geochemical evolution in a highly urbanized coastal area of Shenzhen City, China. Journal of Geochemical Exploration, v. 184, (part A), 17-27. https://doi.org/10.1016/j.gexplo.2017.10.003.

Silva-Filho, E.M.; Barcellos, R.; Emblanch, C.; Blavoux, B.; Sella, S.; Daniel, M.; Simler, R.; Wasserman, J., 2009. Groundwater chemical characterization of a Rio de Janeiro coastal aquifer, SE – Brazil. Journal of South America Earth Sciences, v. 27, (1), 100-108. https://doi.org/10.1016/j.jsames.2008.11.004.

Siqueira, T. 2017. Applying different contamination source geometries in health risk assessment due to ingestion of contaminated groundwater. Brazilian Journal of Environmental Sciences, (43), 85-100. https://doi.org/10.5327/Z2176-947820170113.

Soares, R.; Silva, S.; Souza Filho, F.; Studart, T.; Frota, R., 2020. Groundwater vulnerability to agrochemical contamination. Brazilian Journal of Environmental Sciences, v. 55, (4), 440-455. https://doi.org/10.5327/Z2176-947820200531.

United Nations Children's Fund (UNICEF); World Health Organization (WHO), 2017. Progress on Drinking Water, Sanitation and Hygiene, Update and SDG Baselines. UNICEF, Geneva.

Vilar, P.C., 2016. As águas subterrâneas e o direito a água em um contexto de crise. Ambiente & Sociedade, v. 19, (1), 83-102. https://doi.org/10.1590/1809-4422asoc150126r1v1912016.

Wen, X.; Lu, J.; Wu, J.; Lin, Y.; Luo, Y., 2019. Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Science of the Total Environment, v. 652, 267-277. https://doi.org/10.1016/j.scitotenv.2018.10.250.

World Economic Forum (WEF), 2019. The Global Risks Report 2019. 14. ed. World Economic Forum, Geneva.

World Health Organization (WHO), 2017. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. License: CC BY-NC-SA 3.0 IGO. WHO, Geneva.

Zhang, M.; Huang, G.; Liu, C.; Zhang, Y.; Chen, Z.; Wang, J., 2020. Distributions and origins of nitrate, nitrite, and ammonium in various aquifers in an urbanized coastal area, South China. Journal of Hydrology, v. 582, 124528. https://doi.org/10.1016/j.jhydrol.2019.124528.

Zhang, Q.; Sun, J.; Liu, J.; Huang, G.; Lu, C.; Zhang, Y., 2015. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China. Journal of Contaminant Hydrology, v. 182, 221-230. https://doi.org/10.1016/j.jconhyd.2015.09.009.

Downloads

Published

2022-03-26

How to Cite

Silva, J. H. C. da, Silva-Filho, E., Leite, A., & Molisani, M. M. (2022). Effects of a recent urbanization event on coastal groundwater in the southeastern coast of Brazil: a case study of the Macaé municipality. Revista Brasileira De Ciências Ambientais, 57(1), 114–124. https://doi.org/10.5327/Z2176-94781044