Qualitative assessment in river and phreatic aquifer water in a rural watershed in the Atlantic Forest biome
DOI:
https://doi.org/10.5327/Z217694781041Keywords:
hydrographic basin; water quality; surface water; groundwater.Abstract
Watersheds have different water compartments (surface, subsurface, and underground) connected by the soil-water interface. In order to be able to relate these compartments, monitoring data are necessary, such as the case of the Ribeirão Concórdia watershed, in Lontras, Santa Catarina (SC). This study aimed to evaluate the behavior and the correlation between rainfall-runoff and phreatic surface levels with chemical species concentrations in surface and groundwaters in a rural watershed. Data of 3 piezometers installed in the hydrographic basin were used: PZ2127, PZ3, and PZMC. The piezometers are equipped with hydrostatic level sensors. A fluviometric station is located adjacent to PZ2127 (near the catchment outlet). Concentrations of anions and carbon forms were analyzed in water samples (river and piezometers) taken every 2-3 weeks, from January 14, 2012, to December 23, 2016, totaling 103 samples. Correlations between daily data were verified using Pearson’s correlation coefficient (ρ). The river presented a dilution effect, while the adjacent piezometer had the highest average concentrations of chemical species. Precipitation and chemical species concentration showed no seasonal pattern, with events/peaks throughout the year. Higher concentrations of carbon forms were found in the summer, while lower concentrations were observed in the winter. Positive correlations between concentrations of anions and carbon forms in surface and groundwaters were obtained.
Downloads
References
Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G., 2013. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
Associação Brasileira de Normas Técnicas – ABNT. 1987. NBR 9898: Preservação e técnicas de amostragem de efluentes líquidos e corpos receptores. ABNT, Rio de Janeiro, 22 pp.
Azevedo, J.C.R.; Moura, E.R.R.; Santos, M.M., 2016. Determinação de pesticidas na água e sedimento do rio Piquiri. Revista em Agronegócio e Meio Ambiente, v. 9, (3), 651-671. https://doi.org/10.17765/2176-9168.2016v9n3p651-671.
Bayer, C.; Gomes, J.; Vieira, F.C.B.; Zanatta, J.A.; Piccolo, M.C.P.; Dieckow, J., 2012. Methane emission from soil under long-term no-till cropping systems. Soil and Tillage Research, v. 124, 1-7. https://doi.org/10.1016/j.still.2012.03.006.
Bruland, G.L.; Bliss, C.M.; Grunwald, S.; Comerford, N.B.; Graetz, D.A., 2008. Soil nitrate-nitrogen in forested versus non-forested ecosystems in a mixed-use watershed. Geoderma, v. 148, (2), 220-231. https://doi.org/10.1016/j.geoderma.2008.10.005.
DIONEX, 2010. Achieving low baseline noise for anion determinations by suppressed conductivity using carbonate eluents. DIONEX, Sunnyvale, 4 pp.
Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, 2004. Solos do estado de Santa Catarina. EMBRAPA, Rio de Janeiro, 745 pp.
Esteves, F.A., 2011. Fundamentos de limnologia. Interciência, Rio de Janeiro, 826 pp.
Feitosa, F.A.C.; Manoel Filho, J., 2000. Hidrogeologia: conceitos e aplicações. CPRM, Fortaleza, 391 pp.
Fernandes, J.D.; Souza, A.L.T.; Tanaka, M.O., 2014. Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia, v. 724, 175-185. https://doi.org/10.1007/s10750-013-1732-1.
Freitas, M.D.F.P.P., 2020. Integração de ferramentas de modelagem ambiental, fragmentação da paisagem e tratamentos estatísticos na avaliação da qualidade das águas. Revista Brasileira de Ciências Ambientais, v. 55, (4), 552-569. https://doi.org/10.5327/Z2176-947820200651.
Guggenmos, M.R.; Daughney, C.J.; Jackson, B.M.; Morgenstern, U., 2011. Regional-scale identification of groundwater-surface water interaction using hydrochemistry and multivariate statistical methods, Wairarapa Valley, New Zealand. Hydrology and Earth System Science, v. 15, 3383-3398. https://doi.org/10.5194/hess-15-3383-2011.
Kaufmann, V.; Pinheiro, A.; Silva, M.S.; Castro, N.M.R.; Marques, M.D., 2009. Aporte de nutrientes em eventos de cheia. In: Simpósio Brasileiro de Recursos Hídricos, 13., 2009. Anais.
Kumar, S.K.; Babu, S.H.; Rao, P.E.; Selvakumar, S.; Thivya, C.; Muralidharan, S.; Jeyabal, G., 2017. Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu, India. Applied Water Science, v. 7, 2533-2544. https://doi.org/10.1007/s13201-016-0447-7.
Li, P.; He, S.; Yang, N.; Xiang, G., 2018. Groundwater quality assessment for domestic and agricultural purposes in Yan'an City, northwest China: implications to sustainable groundwater quality management on the Loess Plateau. Environmental Earth Sciences, v. 77, 775. https://doi.org/10.1007/s12665-018-7968-3.
Lubitz, E.; Pinheiro, A.; Kaufmann, V., 2013. Simulação do transporte de sedimentos, nitrogênio e fósforo na bacia do ribeirão Concórdia, SC. Revista Brasileira de Recursos Hídricos, v. 18, (2), 39-54. https://doi.org/10.21168/rbrh.v18n2.p39-54.
Martí, E.; Fisher, S.G.; Schade, J.D.; Welter, J.R.; Grimm, N.B., 2000. Hydrological and chemical linkages between the active channel and the riparian zone in an arid land stream. Verhandlungen des Internationalen Verein Limnologie, v. 27, (1), 442-447. https://doi.org/10.1080/03680770.1998.11901270.
Martinez, J.L.; Raiber, M.; Cox, M.E., 2015. Assessment of groundwater–surface water interaction using long-term hydrochemical data and isotope hydrology: headwaters of the Condamine River, Southeast Queensland, Australia. Science of the Total Environment, v. 536, 499-516. https://doi.org/10.1016/j.scitotenv.2015.07.031.
Midões, C.; Fernandes, J.; Costa, C.G., 2001. Água subterrânea: conhecer para proteger e preservar. IGM, Lisboa, 24 pp.
Moura, L.H.A.; Boaventura, G.R.; Pinelli, M.P.A., 2010. Qualidade de água como indicador de uso e ocupação do solo: Bacia do Gama - Distrito Federal. Química Nova, v. 33, (1), 97-103. https://doi.org/10.1590/S0100-40422010000100018.
Nascimento, S.A.M.; Barbosa, I.S.F., 2005. Qualidade da água do aqüífero freático no Alto Cristalino de Salvador, Bacia do Rio Lucaia, Salvador, Bahia. Revista Brasileira de Geociências, v. 35, (4), 543-540. https://10.25249/0375-7536.200535543550.
Palácio, H.A.Q.; Andrade, E.M.; Crisóstomo, L.A.; Teixeira, A.S.; Souza, I.H., 2008. Selection of the determinates Trussu River water quality factors using multivariable analysis. Geographia Technica, v. 5, 74-81.
Park, Y.; Kim, Y.; Park, S.; Shin, W.; Lee, K., 2018. Water quality impacts of irrigation return flow on stream and groundwater in an intensive agricultural watershed. Science of The Total Environment, v. 630, 859-868. https://doi.org/10.1016/j.scitotenv.2018.02.113.
Piazza, G.A., 2019. Padrões hidroclimáticos e da qualidade da água de uma bacia hidrográfica com agricultura familiar no Bioma Mata Atlântica, sul do Brasil. Doctoral Thesis, Programa de Pós-Graduação em Engenharia Ambiental, Fundação Universidade Regional de Blumenau, Blumenau.
Piazza, G.A.; Depiné, H.; Kaufmann, V.; Pinheiro, A.; Gonçalves Junior, A.C.; Oliveira, M.H.C., 2014. Spatial distribution of soil attributes in the Concórdia river watershed in Southern Brazil. Environmental Quality Management, v. 24, (2), 1-12. https://doi.org/10.1002/tqem.21385.
Santos, G.O.; Hernandez, F.B.T.H., 2013. Uso do solo e monitoramento dos recursos hídricos no córrego do Ipê, Ilha Solteira, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, (1), 60-68. https://doi.org/10.1590/S1415-43662013000100009.
Santos, G.O.; Ribeiro, R.L.; Parreira, T.P.; Silva, D.F.; Silva, K.A.; Azeredo, C.F., 2019. Monitoramento da água em bacia hidrográfica com diferentes usos do solo no município de Rio Verde (GO). Revista em Agronegócio e Meio Ambiente, v. 12, (1), 249-271. https://doi.org/10.17765/2176-9168.2019v12n1p249-271.
Silva, D.J.; Borges, A.L., 2009. Fertilizantes para fertirrigação. In: Borges, A.L.; Coelho, E.F. (Eds.), Fertirrigação em fruteiras tropicais. Cruz das Almas, EMBRAPA.
Silva, J.J.F.; Migliorini, R. B., 2014. Caracterização das águas subterrâneas do aquífero Furnas na região sul do estado de Mato Grosso. Geociências, v. 33, (2), 261-277.
Soares, R.B.; Silva, S.M.O.; Souza Filho, F.A.; Studart, T.M.C.; Frota, R.L., 2020. Groundwater vulnerability to agrochemical contamination. Revista Brasileira de Ciências Ambientais, v. 55, (4), 440-455. https://doi.org/10.5327/10.5327/Z2176-947820200531.
Torres, J.L.R.; Pereira, M.G.; Oliveira, F.A.; Paiva, J.; Cornélio, E.P.; Fernandes, F.S., 2011. Análise das características quantitativas e qualitativas da microbacia do córrego Barreiro, afluente do rio Uberaba. Revista Árvore, v. 35, (4), 931-939. https://doi.org/10.1590/S0100-67622011000500018.
Vega, M.; Pardo, R.; Barrado, E.; Deban, L., 1998. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, v. 32, (12), 3581-3592. https://doi.org/10.1016/S0043-1354(98)00138-9.
Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M., 1998. Groundwater and surface water: a single resource. USGS, Denver, 79 pp.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.