Effect of a temperature rise on metal toxicity for the aquatic biota: a systematic review
DOI:
https://doi.org/10.5327/Z217694781010Keywords:
ecotoxicology; climate changes; microalgae; zooplankton; fish.Abstract
Ecosystems are subject to various stress factors, such as temperature rises due to climate changes and metal disposal. Thermal stress can amplify or mask the effects of metals on aquatic organisms. This study aims to carry out a systematic review on the effects of temperature rises due to climate changes on the toxicity of metals for freshwater organisms. Searches were made in different electronic databases and article selection was based on the following inclusion criteria: concordance with the question of a systematic review; publication in English, Spanish, and Portuguese between 1960 and 2020; and the use of standard methodology. Forty-three articles were included, which were classified with respect to the year and country of publication, test-organisms and metals studied, temperatures tested, and the effects observed. In 80% of the studies analyzed, a temperature rise was responsible for increasing the toxicity of metals for the aquatic organisms. The temperatures studied contemplated the temperature rise predicted by the Intergovernmental Panel for Climate Change at the end of the 21st century. Brazil stood out among the countries for having the greatest number of research studies in this area, although there is still the need for an increase in studies in tropical climate regions. Based on the literature review, it was shown that the metals most studied were copper and cadmium and the test-organisms most used in the research projects were fish. The information obtained from ecotoxicological studies is essential to predict the effects and prevent the risks associated with the metal contamination of aquatic ecosystems due to climate changes.
Downloads
References
Abdel-Tawwab, M.; Wafeek, M., 2014. Influence of water temperature and waterborne cadmium toxicity on growth performance and metallothionein–cadmium distribution in different organs of Nile tilapia, Oreochromis niloticus (L.). Journal of Thermal Biology, v. 45, 157-162. https://doi.org/10.1016/j.jtherbio.2014.09.002.
Abdel-Tawwab, M.; Wafeek, M., 2017. Fluctuations in water temperature affected waterborne cadmium toxicity: Hematology, anaerobic glucose pathway, and oxidative stress status of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, v. 477, 106-111. https://doi.org/10.1016/j.aquaculture.2017.05.007.
Adamczuk M., 2016. Past, present, and future roles of small cladoceran Bosmina longirostris (O. F. Muller, 1785) in aquatic ecosystems. Hydrobiologia, v. 767, 1-11. https://doi.org/10.1007/s10750-015-2495-7.
Ahmed, T.; Zounemat-Kermani, M.; Scholz, M., 2020. Climate change, water quality and water-related challenges: a review with focus on Pakistan. International Journal of Environmental Research and Public Health, v. 17, (22), 8518. https://doi.org/10.3390/ijerph17228518.
Ali, H.; Khan, E.; Ilahi I., 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, v. 2019, 6730305. https://doi.org/10.1155/2019/6730305.
Amoatey, P.; Baawain, M. S., 2019. Effects of pollution on freshwater aquatic organisms, Water Environment Research, v. 91, (10), 1272-1287. https://doi.org/10.1002/wer.1221.
Azevedo, F.A.; Chasin, A.A.M., 2003. Metais. Gerenciamento da Toxicidade. Atheneu InterTox, São Paulo, 554 pp.
Bae, E.; Samanta P.; Yoo J.; Jung J., 2016. Effects of multigenerational exposure to elevated temperature on reproduction, oxidative stress, and Cu toxicity in Daphnia magna. Ecotoxicology and Environmental Safety, v. 132, 366-371. https://doi.org/10.1016/j.ecoenv.2016.06.034.
Boeckman, CJ.; Bidwell, J.R., 2006. The effects of temperature, suspended solids, and organic carbon on copper toxicity to two aquatic invertebrates. Water, Air, & Soil Pollution, v. 171, (1-4), p. 185-202. https://doi.org/10.1007/s11270-005-9036-3.
Braz-Mota, S.; Fé, L.M.L.; Delunardo, F.A.C.; Sadauskas-Henrique, H.; Almeida-Val, V.M.F.; Val, A.L., 2017. Exposure to waterborne copper and high temperature induces the formation of reactive oxygen species and causes mortality in the Amazonian fish Hoplosternum littorale. Hydrobiologia, v. 789, (1), 157-166. https://doi.org/10.1007/s10750-016-2847-y.
Cardoso-Mohedano, J.G.; Bernardello, R.; Sanchez-Cabeza, J.A.; Ruiz-Fernández, A.C.; Alonso-Rodriguez, R.; Cruzado, A., 2015. Thermal impact from thermoelectric power plant on tropical coastal lagoon. Water, Air, & Soil Pollution, v. 226, (1), 2202. https://doi.org/10.1007/s11270-014-2202-8.
Carvalho, C.S.; Fernandes, M.N., 2006. Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture, v. 251, (1), 109-111. https://doi.org/10.1016/j.aquaculture.2005.05.018.
Copetti, D.; Salerno, F., 2020. Climate–water–ecosystem–interactions: insights from four continent’s case studies. Water, v. 12, (5), 1445. http://doi.org/10.3390/w12051445.
Daam, M.A.; Garcia, M.V.; Scheffczyk, A.; Römbke, J., 2020. Acute and chronic toxicity of the fungicide carbendazim to the earthworm Eisenia fetida under tropical versus temperate laboratory conditions. Chemosphere, v. 255, 126871. https://doi.org/10.1016/j.chemosphere.2020.126871.
Da Silva, G.; Silveira, C.; Silva, M.; Marcos Júnior, A.; Souza Filho, F.; Guimarães, S., 2020. Analysis of climate change projections on precipitation and temperature in Brazilian hydrographic regions for the 21st century. Brazilian Journal of Environmental Sciences (Online), v. 55, (3), 420-436. https://doi.org/10.5327/Z2176-947820200624.
DeForest, D.K.; Meyer, J.S., 2015. Critical review: toxicity of dietborne metals to aquatic organisms. Critical Reviews in Environmental Science and Technology, v. 45, (11), 1176-1241. http://dx.doi.org/10.1080/10643389.2014.955626.
Delorenzo, M.E., 2015. Impacts of climate change on the ecotoxicology of chemical contaminants in estuarine organisms. Current Zoology, v. 61, (4), 641-652. https://doi.org/10.1093/czoolo/61.4.641.
Esteves, F.A., 2011. Fundamentos de limnologia. Interciência, Rio de Janeiro, 790 pp.
Ferreira, A.L.G.; Serra, P.; Soares, M.V.M.; Loureiro, S., 2010. The influence of natural stressors on the toxicity of nickel to Daphnia magna. Environmental Science and Pollution Research, v. 17, (6), 1217-1229. https://doi.org/10.1007/s11356-010-0298-y.
Gama-Flores, J.L.; Salas, M.E.H.; Sarma, S.S.S., 2014. Combined effects of temperature (level and oscillation) and cadmium concentration on the demography of Brachionus calyciflorus (Rotifera). International Review of Hydrobiology, v. 99, (1-2), 173-177. https://doi.org/10.1002/iroh.201301722.
Gama-Flores, J.L.; Sarma, S.S.S.; Nandini, S., 2005. Interaction among copper toxicity, temperature and salinity on the population dynamics of Brachionus rotundiformis (Rotifera). Hydrobiologia, v. 546, (1), 559-568. https://doi.org/10.1007/s10750-005-4300-5.
Gill, K.C.; Fovargue, R.E.; Neeson, T.M., 2020. Hotspots of species loss do not vary across future climate scenarios in a drought-prone river basin. Ecology and Evolution, v. 10, (17), 9200-9213. https://doi.org/10.1002/ece3.6597.
Graham, C.T.; Harrod, C., 2009. Implications of climate change for the fishes of the British Isles. Journal of Fish Biology, v. 74, (6), 1143-1205. https://doi.org/10.1111/j.1095-8649.2009.02180.x.
Hallare, A.V.; Schirling, M.; Luckenbach, I.; Köhler, H.-R.; Triebskorn, R., 2005. Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. Journal of Thermal Biology, v. 30, (1), 7-17. https://doi.org/10.1016/j.jtherbio.2004.06.002.
Hani, Y.M.I.; Turies, C.; Palluel, O.; Delahaut, L.; Bado-Nilles, A.; Geffard, A.; Dedourge-Geffard, O.; Porcher, J.M., 2019. Effects of a chronic exposure to different water temperatures and/or to an environmental cadmium concentration on the reproduction of the threespine stickleback (Gasterosteus aculeatus). Ecotoxicology and Environmental Safety, v. 174, 48-57. https://doi.org/10.1016/j.ecoenv.2019.02.032.
Harmon, S.M.; Specht, W.L.; Chandler, G.T.A., 2003. Comparison of the daphnids Ceriodaphnia dubia and Daphnia ambigua for their utilization in routine toxicity testing in the Southeastern United States. Archives of Environmental Contamination and Toxicology, v. 45, (1), 0079-0085. https://doi.org/10.1007/s00244-002-0116-8.
Herrera-R, G.A.; Oberdorff, T.; Anderson, E.P.; Brosse, S.; Carvajal‐Vallejos, F.M.; Frederico, R.G.; Hidalgo, M.; Jézéquel, C.; Maldonado, M.; Maldonado‐Ocampo, J.A.; Ortega, H.; Radinger, J.; Torrente‐Vilara, G.; Zuanon, J.; Tedesco, P.A., 2020. The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Global Change Biology, v. 26, (10), 5509-5523. https://doi.org/10.1111/gcb.15285.
Heugens, E.H.W.; Jager, T.; Creyghton, R.; Kraak, M.H.S.; Hendriks, A.J.; Van Straalen, N.M.; Admiraal, W., 2003. Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environmental Science & Technology, v. 37, (10), 2145-2151. https://doi.org/10.1021/es0264347.
Heugens, E.H.W.; Tokkie, L.T.B.; Kraak, M.H.S.; Hendriks, A.J.; Van Straalen, N.M.; Admiraal, W., 2006. Population growth of Daphnia magna under multiple stress conditions: joint effects of temperature, food, and cadmium. Environmental Toxicology and Chemistry, v. 25, (5), 1399-1407. https://doi.org/10.1897/05-294R.1.
Hilmy, A.M.; El-Domiaty, N.A.; Daabees, A.Y.; Latife, H.A., 1987. Toxicity in Tilapia zilli and Clarias lazera (Pisces) induced by zinc, seasonally. Comparative biochemistry and physiology. C, Comparative Pharmacology and Toxicology, v. 86, (2), 263-265. https://doi.org/10.1016/0742-8413(87)90077-6.
Hochachka, P.W.; Somero, G.N., 2002. Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York, 480 pp.
Hoffman, D.J.; Rattner, B.A.; Burton Jr., A.; Cairns, J.C., 2003. Handbook of ecotoxicology. Taylor & Francis Group, New York, 1312 pp.
Intergovernmental Panel on Climate Change – IPCC. 2014. Climate Change 2014: impacts, adaptation, and vulnerability. Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York, 1132 pp.
Jacquin, L.; Gandar, A.; Aguirre-Smith, M.; Perrault, A.; Le Hénaff, M.; De Jong, L.; Paris-Palacios, S.; Laffaille, P.; Jean, S., 2019. High temperature aggravates the effects of pesticides in goldfish. Ecotoxicology and Environmental Safety, v. 172, 255-264. https://doi.org/10.1016/j.ecoenv.2019.01.085.
Kumar, A.; Gupta, A. K., 2006. Acute toxicity of mercury to the fingerlings of Indian major carps (catla, rohu and mrigal) in relation to water hardness and temperature. Journal of Environmental Biology, v. 27, (1), 89-92.
Kumar, N.; Gupta, S.K.; Bhushan, S.; Singh, A., 2019. Impacts of acute toxicity of arsenic (III) alone and with high temperature on stress biomarkers, immunological status and cellular metabolism in fish. Aquatic Toxicology, v. 214, 105233. https://doi.org/10.1016/j.aquatox.2019.105233.
Lambert, A.S.; Dabrin, A.; Morin, S.; Gahou, J.; Foulquier, A.; Foulquier, A.; Coquery, M.; Pesce, S., 2016. Temperature modulates phototrophic periphyton response to chronic copper exposure. Environmental Pollution, v. 208, (part B), 821-829. https://doi.org/10.1016/j.envpol.2015.11.004.
Lambert, A.S.; Dabrin, A.; Foulquier, A.; Morin, S.; Rosy, C.; Coquery, M.; Pesce, S., 2017. Influence of temperature in pollution-induced community tolerance approaches used to assess effects of copper on freshwater phototrophic periphyton. Science of the Total Environment, v. 607-608, 1018-1025. https://doi.org/10.1016/j.scitotenv.2017.07.035.
Lannig, G.; Cherkasov, A.S.; Sokolova, I.M., 2006. Temperature-dependent effects of cadmium on mitochondrial and whole-organism bioenergetics of oysters (Crassostrea virginica). Marine Environmental Research, v. 62, (suppl. 1), S79-S82. https://doi.org/10.1016/j.marenvres.2006.04.010.
Lenard, T.; Ejankowski, W.; Poniewozik, M., 2019. Responses of phytoplankton communities in selected eutrophic lakes to variable weather conditions. Water, v. 11, (6), 1207. https://doi.org/10.3390/w11061207.
Madden, N.; Lewis, A.; Davis, M., 2013. Thermal effluent from the power sector: an analysis of once-through cooling system impacts on surface water temperature. Environmental Research Letters, v. 8, (3), 035006. https://doi.org/10.1088/1748-9326/8/3/035006.
Martínez-Jerónimo, F.; Rodríguez-Estrada, J.; Martínez-Jerónimo, L., 2008. Daphnia exilis Herrick, 1895 (Crustacea: Cladocera). una especie zooplanctónica potencialmente utilizable como organismo de prueba en bioensayos de toxicidad aguda en ambientes tropicales y subtropicales. Revista Internacional de Contaminación Ambiental, v. 24, (4), 153-159.
Martins, T.S.; Carmo Junior, G.N.R., 2018. Avaliação de impacto ambiental: uma revisão sistemática sob a ótica metodológica. E&S Engineering and Science, v. 7, (2), 29-41. https://doi.org/10.18607/ES201876616.
Merçon, J.; Pereira, M.P.; Passos, L.S.; Lopes, I.O.; Coppo, G.; Barbosa, B.; Cabral, D.; Gomes, C.G.L., 2019. Temperature affects the toxicity of lead-contaminated food in Geophagus brasiliensis (QUOY & GAIMARD, 1824). Environmental Toxicology and Pharmacology, v. 66, 75-82. https://doi.org/10.1016/j.etap.2018.12.013.
Messiaen, M.; De Schamphelaere, K.A.C.; Muyssen, B.T.A.; Janssen, C.R., 2010. The micro-evolutionary potential of Daphnia magna population exposed to temperature and cadmium stress. Ecotoxicology and Environmental Safety, v. 73, (6), 1114-1122. https://doi.org/10.1016/j.ecoenv.2010.05.006.
Morin, S.; Lambert, A.S.; Rodriguez, P.; Dabrin, A.; Coquery, M.; Pesce, S., 2017. Changes in copper toxicity towards diatom communities with experimental warming. Journal of Hazardous Materials, v. 334, 223-232. https://doi.org/10.1016/j.jhazmat.2017.04.016.
Nandini, S.; Picazo-Paez, E.A.; Sarma, S.S.S., 2007. The combined effects of heavy metals (copper and zinc), temperature and food (Chlorella vulgaris) level on the demographic characters of Moina macrocopa (Crustacea: Cladocera). Journal of Environmental Science and Health, Part A, v. 42, (10), 1433-1442. https://doi.org/10.1080/10934520701480789.
Noyes, P.D.; Lema, S.C., 2015. Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. Current Zoology, v. 61, (4), 669-689. https://doi.org/10.1093/czoolo/61.4.669.
Nussey, G.; Vuren, J.H.J.V.; Preez, H.H.D., 1996. Acute toxicity tests of copper on juvenile Mozambique tilapia, Oreochromis mossambicus (Cichlidae), at different temperatures. South African Journal of Wildlife Research, v. 26, (2), 47-55. https://hdl.handle.net/10520/EJC116995.
O'Briain, R., 2019. Climate change and European rivers: an eco-hydromorphological perspective. Ecohydrology, v. 12, (5), e2099. https://doi.org/10.1002/eco.2099.
Oukarroum, A.; Perreault, F.; Popovic, R., 2012. Interactive effects of temperature and copper on photosystem II photochemistry in Chlorella vulgaris. Journal of Photochemistry and Photobiology B: Biology, v. 110, 9-14. https://doi.org/10.1016/j.jphotobiol.2012.02.003.
Park, K.; Han, E.J.; Ahn, G.; Kwak, I.-S., 2020. Effects of thermal stress-induced lead (Pb) toxicity on apoptotic cell death, inflammatory response, oxidative defense, and DNA methylation in zebrafish (Danio rerio) embryos. Aquatic Toxicology, v. 224, 105479. https://doi.org/10.1016/j.aquatox.2020.105479.
Pereira, C.M.S.; Blust, R.; De Schamphelaere, K.A.C., 2019. Effect of temperature on nickel uptake and elimination in Daphnia magna. Environmental Toxicology and Chemistry, v. 38, (4), 784-793. https://doi.org/10.1002/etc.4352.
Pereira, C.M.S.; Deruytter, D.; Blust, R.; De Schamphelaere, K.A.C., 2017. Effect of temperature on chronic toxicity of copper, zinc, and nickel to Daphnia magna. Environmental Toxicology and Chemistry, v. 36, (7), 1909-1916. https://doi.org/10.1002/etc.3714.
Perschbacher, P.W., 2005. Temperature effects on acute copper toxicity to juvenile channel catfish Ictalurus punctatus. Aquaculture, v. 243, (1-4), 225-228. https://doi.org/10.1016/j.aquaculture.2004.10.006.
Philippe, C.; Hautekiet, P.; Gregoir, A. F.; Thore, E. S. J.; Pinceel, T. S. R.; Brendonck L.; De Boeck, G., 2018. Combined effects of cádmium exposure and temperature on the annual killifish (Nothobranchius furzeri). Environmental Toxicology and Chemistry, 37, (9), 2361-2371. https://doi.org/10.1002/ETC.4182.
Pinheiro, J.P.S.; Assis, C.B.; Muñoz-Peñuela, M.; Barbosa Júnior, F.; Correia, T.G.; Moreira, R.G., 2019. Water temperature and acid pH influence the cytotoxic and genotoxic effects of aluminum in the freshwater teleost Astyanax altiparanae (Teleostei: Characidae). Chemosphere, v. 220, 266-274. https://doi.org/10.1016/j.chemosphere.2018.12.143.
Pound, K.L.; Larson, C.A.; Passy, S.I., 2021. Current distributions and future climate-driven changes in diatoms, insects and fish in US streams. Global Ecology and Biogeography, 30, 63-78. https://doi.org/10.1111/geb.13193.
Qiu, J., 2012. Trouble on the Yangtze. Science, v. 336, (6079), 288-291. https://doi.org/10.1126/science.336.6079.288.
Radinger, J.; Hölker, F.; Horký, P.; Slavík, O.; Dendoncker, N.; Wolter, C., 2016. Synergistic and antagonistic interactions of future land use and climate change on river fish assemblages. Global Change Biology, v. 22, (4), 1505-1522. https://doi.org/10.1111/gcb.13183.
Raptis, C.E.; van Vliet, M.T.H.; Pfister, S. 2016. Global thermal pollution of rivers from thermoelectric power plants. Environmental Research Letters, v. 11, 104011. https://doi.org/10.1088/1748-9326/11/10/104011.
Raymundo, L.B.; Rocha, O.; Moreira, R.A.; Miguel, M.; Daam, M.A., 2019. Sensitivity of tropical cladocerans to chlorpyrifos and other insecticides as compared to their temperate counterparts. Chemosphere, v. 220, 937-942. https://doi.org/10.1016/j.chemosphere.2019.01.005.
Rehwoldt, R.; Menapace, L.W.; Nerrie, B.; Alessandrello, D., 1972. The effect of increased temperature upon the acute toxicity of some heavy metal ions. Bulletin of Environmental Contamination and Toxicology, v. 8, (2), 91-96. https://doi.org/10.1007/BF01684513.
Salazar-Lugo, R.; León, A.; Lemus, M., 2009. Efecto del cadmio y de la temperatura sobre el conteo de células sanguíneas del pez dulceacuícola Colossoma macropomum. Revista Científica (Maracaibo), v. 19, (1), 1-11.
Sampaio, R.F.; Mancini, M.C., 2007. Estudos de Revisão Sistemática: um guia para síntese criteriosa da evidência científica. Brazilian Journal of Physical Therapy, v. 11, (1), 77-82. http://dx.doi.org/10.1590/S1413-35552007000100013.
Sassi, A.; Annabi, A.; Kessabi, K.; Kerkeni, A.; Saïd, K.; Messaoudi, I., 2010. Influence of high temperature on cadmium-induced skeletal deformities in juvenile mosquitofish (Gambusia affinis). Fish Physiology and Biochemistry, v. 36, (3), 403-409. https://doi.org/10.1007/s10695-009-9307-9.
Schiedek, D.; Sundelinet, B.; Readman, J.W.; Macdonald, R.W., 2007. Interactions between climate change and contaminants. Marine Pollution Bulletin, v. 54, (12), 1845-1856. https://doi.org/10.1016/j.marpolbul.2007.09.020.
Silva, L.C.M.; Daam, M.A.; Gusmao, F., 2020. Acclimation alters glyphosate temperature-dependent toxicity: Implications for risk assessment under climate change. Journal of Hazardous Materials, v. 385, 121512. https://doi.org/10.1016/j.jhazmat.2019.121512.
Silva, V.; Marques, C.R.; Campos, I.; Vidal, T.; Keizer, J.J.; Gonçalves, F.; Abrantes, N., 2018. Combined effect of copper sulfate and water temperature on key freshwater trophic levels–approaching potential climatic change scenarios. Ecotoxicology and Environmental Safety, v. 148, 384-392. https://doi.org/10.1016/j.ecoenv.2017.10.035.
Stuhlbacher, A.; Bradley, M.C.; Naylor, C.; Calow, P., 1993. Variation in the development of cadmium resistance in Daphnia magna Straus; effect of temperature, nutrition, age and genotype. Environmental Pollution, v. 80, (2), 153-158. https://doi.org/10.1016/0269-7491(93)90141-A.
Tsui, M.T.K.; Wang, W.X., 2004. Temperature influences on the accumulation and elimination of mercury in a freshwater cladoceran, Daphnia magna. Aquatic Toxicology, v. 70, (3), 245-256. https://doi.org/10.1016/j.aquatox.2004.09.006.
Val, J.; Muñiz, S.; Gomà J.; Navarro, E., 2016. Influence of global change-related impacts on the mercury toxicity of freshwater algal communities. Science of the Total Environment, v. 540, 53-62. https://doi.org/10.1016/j.scitotenv.2015.05.042.
Van Ginneken, M.; Blust, R.; Bervoets, L., 2019. The impact of temperature on metal mixture stress: Sublethal effects on the freshwater isopod Asellus aquaticus. Environmental Research, v. 169, 52-61. https://doi.org/10.1016/j.envres.2018.10.025.
Vardhan, K.H.; Kumar, P.S.; Panda, R.C., 2019. A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. Journal of Molecular Liquids, v. 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197.
Vergauwen, L.; Hagenaars, A.; Blust, R.; Knapen, D., 2013. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. Aquatic Toxicology, v. 126, 52-62. https://doi.org/10.1016/j.aquatox.2012.10.004.
Wetzel, R.G., 2001. Limnology: lake and river ecosystems. Academic Press, San Diego, 1006 pp.
Xu, X.; Wang, Y.-C.; Kalcic, M.; Muenich, R.L.; Yang, Y.C.E.; Scavia, D., 2019. Evaluating the impact of climate change on fluvial flood risk in a mixed-use watershed. Environmental Modelling and Software, v. 122, 104031. https://doi.org/10.1016/j.envsoft.2017.07.013.
Yong, W.-K.; Sim, K.S.; Poong, S.W.; Wei, D.; Phang, S.M.; Lim, P.E., 2018. Interactive effects of temperature and copper toxicity on photosynthetic efficiency and metabolic plasticity in Scenedesmus quadricauda (Chlorophyceae). Journal of Applied Phycology, v. 30, (6), 3029-3041. https://doi.org/10.1007/s10811-018-1574-3.
Zagatto, P.A.; Bertoletti, E., 2006. Ecotoxicologia aquática: princípios e aplicações. Rima, São Carlos, 464 pp.
Zebral, Y.D.; Fonseca, J.S.; Roza, M.; Costa, P.G.; Robaldo, R.B.; Bianchini, A., 2020. Combining elevated temperature with waterborne copper: impacts on the energy metabolism of the killifish Poecilia vivipara. Chemosphere, v. 253, 126631. https://doi.org/10.1016/j.chemosphere.2020.126631.
Zebral, Y.D.; Roza, M.; Fonseca, J.S.; Costa, P.G.; De Oliveira, C.S.; Zocke, T.G.; Dal Pizzol, J.L.; Robaldo, R.B.; Bianchini, A., 2019. Waterborne copper is more toxic to the killifish Poecilia vivipara in elevated temperatures: Linking oxidative stress in the liver with reduced organismal thermal performance. Aquatic Toxicology, v. 209, 142-149. https://doi.org/10.1016/j.aquatox.2019.02.005.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Brasileira de Ciências Ambientais
This work is licensed under a Creative Commons Attribution 4.0 International License.