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A B S T R A C T 
Wood density is the physical property directly related to the timber 
potential of a species and influences the environmental service of 
carbon storage and sequestration. Therefore, the objective of this study 
was to evaluate the wood density at different moisture levels (apparent, 
anhydrous, and basic) of the species Bertholletia excelsa, Dipteryx 
odorata, and Khaya grandifoliola in a young forest stand cultivated in 
an integrated crop-livestock-forest system. The Technological Reference 
Unit, established in 2010, highlighted the necessity for management 
interventions by 2021 to prevent excessive shading and eliminate 
phenotypically undesirable species. Material samples were harvested 
at five heights along the commercial stem to analyze wood density 
(anhydrous, apparent, and basic). Our results revealed that D. odorata 
had the highest densities (0.99, 0.91, and 0.83 g/cm3), while B. excelsa 
and K. grandifoliola displayed lower densities (0.68, 0.61, 0.55 g/cm3 
and 0.61, 0.56, 0.51 g/cm3, respectively). Notably, D. odorata exhibited 
an increasing basic density from base to top, while K. grandifoliola 
demonstrated greater homogeneity along its stem. The presented 
results provide robust technical support to inform decision-making on 
the use of native and exotic species in integrated production systems, 
as well as emphasizing the potential of the crop-livestock-forest system 
as a sustainable production practice.

Keywords: young forest plantations; physical properties of wood; 
bioeconomic potential; Pará.

R E S U M O
A densidade da madeira é a propriedade física diretamente relacionada 
ao potencial madeireiro de uma espécie e influencia o serviço ambiental 
de armazenamento e sequestro de carbono. Portanto, o objetivo deste 
estudo foi de avaliar a densidade da madeira em diferentes níveis de 
umidade (aparente, anidra e básica) das espécies Bertholletia excelsa, 
Dipteryx odorata e Khaya grandifoliola em um povoamento florestal jovem 
cultivado em um sistema integração lavoura-pecuária-floresta. A Unidade 
de Referência Tecnológica, estabelecida em 2010, destacou a necessidade 
de intervenções de manejo até 2021 para evitar sombreamento excessivo 
e eliminar espécies fenotipicamente indesejáveis. Amostras de material 
foram colhidas em cinco alturas ao longo do tronco comercial para analisar 
a densidade da madeira (anidra, aparente e básica). Nossos resultados 
revelaram que D. odorata apresentou as maiores densidades (0,99, 
0,91 e 0,83 g/cm3), enquanto B. excelsa e K. grandifoliola apresentaram 
densidades menores (0,68, 0,61, 0,55 g/cm3 e 0,61, 0,56, 0,51 g/cm3, 
respectivamente). Notavelmente, D. odorata exibiu um aumento 
na densidade básica de base para o topo, enquanto K. grandifoliola 
demonstrou maior homogeneidade ao longo de seu tronco. Os resultados 
apresentados fornecem suporte técnico robusto para informar a tomada 
de decisões sobre o uso de espécies nativas e exóticas em sistemas de 
produção integrados, além de enfatizar o potencial do sistema integração 
lavoura-pecuária-floresta como uma prática de produção sustentável.

Palavras-chave: plantios florestais jovens; propriedades físicas da 
madeira; potencial bioeconômico; Pará.
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INTRODUCTION
The Brazilian Amazon has 497,222 km2 of degraded area (PRODES, 

2024). As an alternative to reduce these areas, rural properties have 
adopted the integrated crop-livestock-forest (CLF) production system, 
providing greater food security and environmental sustainability, being 
considered a nature-based solution (Balbino et  al., 2011; Martorano 
et al., 2021a; Nwaogu and Cherubin, 2024). The CLF involves combin-
ing agricultural, livestock, and forestry activities within the same area 
through intercropping, rotation, or succession (Brasil, 2013; Monteiro 
et al., 2024). The CLF system spans approximately 17 million hectares 
across Brazil (ILPF Network, 2021).

Several forest species are used in CLF systems in the Amazon (Be-
hling et al., 2021; Santana et al., 2023; Souza et al., 2024), as the com-
ponent that remains in the system the longest, being responsible for 
a large part of the carbon accumulation in the soil and aboveground 
biomass (Kohl et al., 2017). Therefore, for silvicultural techniques to 
be disseminated and proper management to occur, information on the 
characteristics and uses of the species is necessary. Among the spe-
cies used in CLF, the following stand out: Bertholletia excelsa Humn. & 
Bonpl. (Amazon nut) and Dipteryx odorata (Aubl.) Willd. (Cumaru), 
both native to the Amazon, and the exotic Khaya grandifoliola C. DC. 
(African mahogany). Bertholletia excelsa is a hyperdominant species, 
reaching 50 m in height, valued for its nuts and by-products (oils, bran) 
that contribute to local economies, although it is protected from tim-
ber exploitation by law (Brasil, 2006; Wadt et al., 2023; Souza JP et al., 
2023). Dipteryx odorata, a climax species from the Fabaceae family, 
reaches 35 m and is valued for its durable wood and seeds containing 
coumarin, used in various industries (Herrero-Jáuregui et al., 2011; Sil-
va-Neto et al., 2023). Khaya grandifoliola, from the Meliaceae family, is 
a large African tree that reaches 30–35 m in height. Its timber is highly 
valued internationally for its excellent quality, making it a sought-after 
material for furniture, construction, and musical instruments (Ribeiro 
et al., 2017; Reis et al., 2019). Beyond its commercial applications, K. 
grandifoliola also holds significant importance in traditional medicine 
and modern pharmacological studies, particularly for its antimalari-
al properties. This dual role as a commercial and medicinal resource 
emphasizes the importance of sustainable management and further 
research to optimize its benefits (Mukaila et al., 2021).

Wood density is the physical property directly related to the timber 
potential of a species and also influences its environmental service of 
carbon storage and sequestration (Schulz et al., 2019; Santos et al., 2021; 
Romero et al., 2024). In this context, density can be determined at dif-
ferent moisture levels, namely: anhydrous (measured after the wood is 
dried, indicating the density without any moisture content); apparent 
(measured with moisture content at field levels, representing the density 
in its natural state); and basic (often considered the most stable measure, 
as it represents density in its oven-dry state based on the volume of the 
wood when it is saturated with water) (Rezende and Escobedo, 1988). 

It is important to note that basic density is the most commonly cited in 
the literature for determining the use of woody material, as it reflects the 
maximum fiber saturation level (Oliveira et al., 2019).

The wood density of planted trees is influenced by soil treatments 
involving chemical inputs like Nitrogen, Phosphorus, and Potassium 
(NPK), as well as factors such as tree spacing, growth rates, and climat-
ic conditions (Ferreira et al., 2019; Lima et al., 2024; Rocha et al., 2020). 
Additionally, density variations occur both radially and longitudinally 
as trees mature (Hsing et  al., 2016) and are further affected by spe-
cies-specific traits, taxonomic group, and stand age (Sette Junior et al., 
2012; Wassenberg et al., 2015). Accounting for these density variations 
along the stem is essential for accurate forest biomass estimation, as 
disregarding this systematic source of error can lead to substantial in-
accuracies in biomass estimates, particularly in intercropped systems 
like CLF systems.

There is a lack of studies on the evaluation of longitudinal wood 
density in young stands within integrated production systems. How-
ever, the understanding of density variations along the trunk in young 
trees is limited, despite its importance for accurate biomass estimates, 
carbon stock assessments, and sustainable wood utilization strategies 
(Bonfatti Júnior et al., 2023; Momolli et al., 2024; Pimenta et al., 2024).

Longitudinal density profiles can vary significantly, influenc-
ing wood quality and applications, especially in species cultivated in 
high-density plantations, where competition and environmental con-
ditions affect growth patterns (Zhang et  al., 2021). Addressing this 
research gap is essential for advancing integrated production models 
aimed at biodiversity conservation and supporting the local economy. 
Therefore, the objective of this study was to evaluate the wood density 
at different moisture levels (apparent, anhydrous, and basic) of the spe-
cies B. excelsa, D. odorata, and K. grandifoliola in a young forest stand 
cultivated in a CLF system.

MATERIALS AND METHODS

Characterization of the study area
The study was carried out at the Technological Reference Unit 

(TRU), located on the Nossa Senhora de Aparecida farm in a part-
nership between the Brazilian Agricultural Research Corporation 
(Embrapa Amazônia Oriental) and the rural producer, under con-
tract nº.  22500.10/0039. The TRU is in the municipality of Mojuí 
dos Campos, between the geographical coordinates 02°38’11” S and 
54°56’13” W, which is 37 km from the center of Santarém (BR 316/
Santarém-Cuiabá), a commercial hub in the western region of Pará.

The altimetry of the study area is representative of the “Santareno 
Plateau,” characterized by an average elevation of 153 m above sea lev-
el (Cortes et al., 2020). This region features small depressions between 
valleys that create streams, which eventually flow into the Tapajós River 
(Cândido et al., 2023). The predominant soil in the region is classified as 
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yellow latosol, characterized by a medium to very clayey texture, deep 
drainage, and good water retention. The vegetation is primarily com-
posed of dense ombrophilous dryland forest (Guerreiro et al., 2017).

The predominant climate typology is Am3 according to the adapta-
tion of the Köppen methodology proposed by Martorano et al. (1993), 
indicating that there are months with rainfall of less than 60 mm and 
annual rainfall ranging from 2,000 to 2,500 mm, with the wettest peri-
od occurring from December to May, concentrating 80% of the rainfall 
volume, and the least rainy (20%) from June to November (Martorano 
et al., 2021b). 

When observing the water deficiency map with values ranging 
from 120 to 180 mm (readily available water [RAW] = 300 mm), it 
indicates that these are conditions of average soil water stocks for adult 
plants (Figure 1). According to Costa et  al. (2018), the study area is 
influenced by average temperatures of 26.5°C and, in terms of climatic 
averages, the maximum temperature varies between 30.5 and 32.0°C 
and the minimum between 21.0 and 22.5°C.

The history of the TRU was detailed by Silva et al. (2018) and is 
currently established as a livestock-forestry (LF) system, as noted 
by Cândido et al. (2023). In this system, the forest species B. excelsa, 
D. odorata, and K. grandifoliola have been growing for 11 years without 
irrigation. These species are arranged in eight rows, spaced 7 m apart 
with a row distance of 5 m, and covering a total area of 0.92 hectares.

Figure 2 shows the data collection carried out in the field, depicting 
forest plantations, a thinned tree, and 5 cm thick sections (disks) ex-
tracted from each tree according to commercial height at the following 
relative positions on the tree: base (0%), 25, 50, 75, and top (100%) of 
commercial height (Ramalho et al., 2019). It is important to note that 
the material collection took place between September and November 
2021, which is typically the driest period in the Amazon region, min-
imizing the potential impact of rainfall on the data collected (Longo 
et al., 2020).

In 2021, trees were felled to ensure the full functioning of the in-
tegrated production system, considering the maintenance of the tree 
component with the best phenotypic characteristics to also provide light 
penetration to the grasses in each plot. The plantations had 200 trees of 
B. excelsa (25 individuals per row), 240 trees of D. odorata (30 individ-
uals per row), and 264 trees of K. grandifoliola (33 individuals per row). 
The system was being used practically as a rest area for zebu cattle (Bos 
indicus Linnaeus), which, during sunshine hours, used the tree plots only 
as a refuge/shelter/harbor for animal comfort, as the pastures were un-
derperforming due to the denseness of the trees. The animals predomi-
nantly use 7.3 ha with grasses (Panicum maximum Jacq.) that intersperse 
the plots. It is important to emphasize that these differences between the 
numbers of individuals in the plots are caused by the losses inherent in 
consolidating an experimental unit in a CLF system.

Figure 1 – Map containing information on the location of Nossa Senhora de Aparecida farm, Mojuí dos Campos (PA), and data from 2021 on the climatic 
typology of the surroundings, annual rainfall, and cartographic base. 
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Data collection
A diameter distribution of the trees was carried out, as demonstrat-

ed in the diameter classes, to guarantee the representation of trees at all 
sizes, in accordance with the values presented in Table 1.

In the Wood Technology Laboratory at the Federal University of 
Western Pará, a wedge-shaped sample corresponding to 1/8 of the disk 
was taken from each disk, and the bark was discarded (Gendvilas et al., 
2022). The wedges were identified, weighed on a precision balance 
(with an accuracy of 0.005 g), and organized into mesh bags contain-
ing five samples from each tree. The samples were immersed in a water 
tank until they reached full saturation, after which the green volume of 
the samples was determined.

The sample material was then kept in a forced-air oven at 60°C 
until it reached 0% humidity, to remove the water by capillarity. Figure 
3 presents a summary of the ten methodological steps of the work.

After recording the saturated mass, dry mass, saturated volume, 
and dry volume, the apparent, anhydrous and basic densities were ob-
tained, according to Equations 1, 2, and 3, respectively.
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ρ apparent  =  apparent density (g.cm-3); 
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Figure 2 – Field activities, highlighting the thinning and collection of discs to obtain the wood density of Bertholletia excelsa, Dipteryx odorata, and Khaya grandifoliola.

Table 1 – Number of trees collected according to the diametric class (in centimeters) of the selected individuals.

Bertholletia excelsa

6 ≤ DBH < 11 11 ≤ DBH < 16 16 ≤ DBH < 21 21 ≤ DBH < 26 26 ≤ DBH < 31 DBH ≥ 31 Total

n 5 4 5 5 5 5 29

Dipteryx odorata

6 ≤ DBH < 9 9 ≤ DBH < 12 12 ≤ DBH < 15 15 ≤ DBH < 18 18 ≤ DBH < 21 DBH ≥ 21 Total

n 5 5 4 5 2 3 24

Khaya grandifoliola

12 ≤ DBH < 17 17 ≤ DBH < 22 22 ≤ DBH < 27 27 ≤ DBH < 32  DBH ≥ 32 Total

n 5 5 4 5 5 24

DBH: diameter at breast height.

http://g.cm
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Once the anhydrous, apparent, and basic densities had been ob-
tained, it was necessary to apply the weighted average, based on the 
diameter of each sample, to make the data more robust and reliable, 
according to Equation 4 (Downes et al., 1997). 
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Figure 3 – Methodological scheme for obtaining the wood densities of Bertholletia excelsa, Dipteryx odorata, and Khaya grandifoliola.
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power method was applied to transform the variables (Box and Cox, 
1964). In addition, the basic density data along the stem was analyzed 
through multivariate statistics, represented graphically by dendrogram 
and confidence ellipse of the means, using the free statistical software 
SAS (Statistical Analysis System, 2023).

RESULTS AND DISCUSSION

Differences in types of densities and their 
implications for crop-livestock-forest

The average values found for the density (ρ) of apparent, anhy-
drous, and basic wood from the CLF forest component shows a de-
creasing tendency. In D. odorata, the values were ρ apparent 0.99, ρ 
anhydrous 0.91, and ρ basic 0.83; for B. excelsa, ρ apparent was 0.68, 
ρ anhydrous 0.61, and ρ basic 0.55; and in K. grandifoliola, ρ apparent 
was 0.61, ρ anhydrous 0.56; and ρ basic 0.51, in g.cm-3. The species that 
presented the highest value for diameter at breast height (DBH) was 
K. grandifoliola, with an average of 32.18 cm, followed by B. excelsa, 
with 20.92 cm, and D. odorata with 13.86 cm (Table 2). This informa-
tion reflects important implications for understanding wood’s physical 
properties and its application in the CLF system.

In this context, apparent density is generally associated with the 
strength and stiffness of wood (Christoforo et al., 2020). In the CLF sys-
tem, where trees coexist with annual crops and pastures, apparent densi-
ty is an essential metric for evaluating timber potential, with D. odorata 
having the highest apparent density (0.99 g.cm-³). According to Bamber 
et al. (1982), the increase in apparent density is due to changes in the 
morphology of the fibers, with an increase in the cell wall fraction.

Anhydrous density refers to the density of wood that is completely dry, 
without any moisture content (Altgen et al., 2023). This type of density is 
relevant for the use of wood in industrial applications. D. odorata, which 
has an anhydrous density of 0.91 g.cm-³, can be used to provide wood with 
good strength, suitable for structural use, including applications that may 
reduce the cost of external inputs on the property (Silva-Neto et al., 2023).

Basic density is considered the most stable measure and reflects the 
relationship between dry mass and saturated volume of wood (ABNT, 
2003). In the CLF system, basic density is important for long-term 
planning, as it provides a standard measure for comparing species and 
helps to understand the characteristics of wood over time and under 
environmental changes (Eloy et al., 2024). K. grandifoliola, with a basic 
density of 0.51 g.cm-³, may be more suitable for areas where the focus 
is on fast growth and the production of lightweight wood for less de-
manding uses, while D. odorata, with 0.83 g.cm-³, provides denser and 
more durable wood, suitable for long-term industrial or commercial 
use (Reis et al., 2019; Sousa et al., 2019).

The variability among species, expressed by the coefficient of vari-
ation (CV, %) and the mean DBH, allows for the selection of specific 
species for different functions within the system. The Shapiro-Wilk 
test values suggest that data for each density type are approximately 
normally distributed. Species with lower density variability, such as 
B. excelsa (CV = 6.44%), can provide greater predictability regarding 
biomass and carbon stock (Souza CR et al., 2023). On the other hand, 
the larger average DBH of K. grandifoliola (32.18 cm) indicates that this 
species can be used in a CLF system focused on the rapid production 
of biomass, benefiting systems with high harvest turnover and product 
diversification (Santos et al., 2020; Gomes et al., 2024).

The densities of the analyzed woods help select the most suitable 
species for the specific objectives of each CLF system, promoting a 
balance between productivity, sustainability, and the conservation of 
natural resources.

Analyze the longitudinal variation in wood basic density
Basic density is more commonly used in scientific research, as it rep-

resents wood in its maximum state of expansion, with moisture content 
above the fiber saturation point (approximately 30%). The International 
Association of Wood Anatomists (IAWA) considers basic wood density 
classification (Wheeler et al., 1989). This parameter provides a consistent 
measure for comparing wood density across species, as it excludes vari-
ations caused by moisture levels below the saturation threshold (Olivei-
ra et al., 2019). For this reason, the basic wood density of forest species 
present in the CLF was analyzed in detail along the stem where a similar 
decay curve was observed across the three species, as shown in Figure 4. 

The analysis of basic density along the stems of D. odorata, B. excel-
sa, and K. grandifoliola reveals distinct patterns with implications for 
forestry management. D. odorata exhibited the highest basic density 
near the ground (0%) at 0.88 g/cm3, which gradually decreased along 
the stem (0.85, 0.80, and 0.77 g/cm3 at 50, 75, and 100% of the stem, 
respectively), indicating that the densest wood is at the base, likely 
due to mature wood concentration. In B. excelsa, a significant density 
difference was observed only at the base (0.63 g/cm3), suggesting that 
mass accumulates there to support the tree’s structural and ecological 
roles. K. grandifoliola, an exotic species, showed uniform density dis-
tribution, with significant variation only between the base and the rest 

Table 2 – Apparent, anhydrous, and basic densities (mean values and 
standard deviations ±) and wood of the forest components (diameter at 
breast height) present in the crop-livestock-forest system.

Species

Density
ρ (g.cm-3) Bertholletia excelsa Dipteryx odorata Khaya 

grandifoliola

Apparent 0.68 ± 0.05 a 0.99 ± 0.10 a 0.61 ± 0.06 a

Anhydrous 0.61 ± 0.03 b 0.91 ± 0.10 b 0.56 ± 0.04 b

Basic 0.55 ± 0.03 c 0.83 ± 0.06 c 0.51 ± 0.05 c

CV (%) 6.44 9.76 9.17

p-value 2.02 e-19 3.20 e-07 1.10 e-07

DBH (cm) 20.92 ± 7.86 13.86 ± 4.70 32.18 ± 9.58

DBH: diameter at breast height; CV: coefficients of variation. Means followed by 
the same letter in the columns do not differ according to the Tukey’s test at 5%. 
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of the stem, making it a promising candidate for forestry crops in the 
region due to its consistent wood quality. 

These findings align with previous studies indicating a general decrease 
in basic density from base to top, attributed to a shift from mature to juvenile 
wood (Hsing et al., 2016; Dimou et al., 2023; Romero et al., 2024; Momolli 
et al., 2024). The basic density of the wood evaluated in the present study is 
of fundamental importance, as it directly influences wood processing and 
utilization, as well as serves as a basis for estimating above-ground biomass 
and carbon stock (Silveira et al., 2013; Poorter et al., 2015). However, studies 
analyzing basic wood density along the stem of the species included in this 
research are limited (França et al., 2015; Momolli et al., 2024).

Latreille et al. (2018) evaluated the physical and mechanical prop-
erties of Dipteryx alata (Baru), a 10-year-old species in a monoculture 
that belongs to the same genus as D. odorata (Cumaru) and reported 
a basic density of 0.78 g.cm-³; however, this study did not provide a de-
tailed analysis along the stem. The basic density was observed to be lower 
than that found in the present study, with only a one-year age difference, 
indicating that the wood of D. odorata in our research is denser.

Lima et al. (2024) examined the wood properties of twenty Amazo-
nian tree species with potential for commercial timber use and identified 
D. odorata as having the highest basic density among them, at 0.91 g.cm-

³. This high density contributes to the species’ desirability on the mar-
ket, making it one of the most heavily exploited in the Amazon (Hono-
rio-Coronado et al., 2020). In addition to its value as a timber resource, 
D. odorata also shows potential for ecological benefits. Brasil-Neto et al. 
(2021) highlighted its suitability for reforestation efforts and its role in 
improving soil quality in degraded pastures in the Eastern Amazon. 
Together, these findings underscore the dual value of D. odorata, both 
economically and ecologically, offering sustainable opportunities for its 
cultivation in integrated systems in the Amazon (Lopes et al., 2023).

The basic wood density of B. excelsa in native forests of the Bra-
zilian Amazon is 0.62 g.cm-³ (Fearnside, 1997), a value similar to that 
observed in the present study, where the species is in a juvenile phase, 
located in a recovery degraded area. The B. excelsa, although prohib-
ited from commercial harvesting in Brazil (Brasil, 2006), can enhance 
the economic and ecological value of integrated systems. When present 
in these systems, B. excelsa provides additional products for commer-
cialization, such as seeds, which have established national and inter-
national markets, and contributes to carbon storage strategies (Vieira 
et al., 2022; Souza AO et al., 2023). This versatility adds further value to 
integrated systems, strengthening the case for including native species 
with high ecological value in sustainable cultivation practices. 

Momolli et  al. (2024) conducted a detailed characterization of 
wood density in K. grandifoliola cultivated in monoculture with a 
planting spacing of 30 x 30 cm, at 9.5 years of age. They observed that 
the species exhibited a basic density ranging from 47.8 to 55.9 g.cm-

³, with a decrease in density along the stem. In the middle positions 
(25, 50, and 75%), no significant differences in density were observed. 
The trees displayed an average commercial height of 5.7 m and a mean 
DBH of 21.3 cm. All characteristics were like those of K. grandifoliola 
in our study, except for DBH, which was greater in the present study, 
with a value of 32.18 cm, likely due to the wider spacing used. 

The combination of native and exotic species for the recovery of 
degraded areas is established in Law No. 12,651/2012, known as the 
“New Forest Code” (Brasil, 2012). This legal instrument provides sup-
port for the use of species like K. grandifoliola in the restoration of legal 
reserves. The law facilitates the incorporation of agroforestry and oth-
er sustainable practices into environmental regularization programs, 
both on titled rural properties and areas with land tenure, thereby pro-
moting both ecological restoration and sustainable production.

In this context, the basic density values analyzed in the study are 
fundamentals for understanding the potential of these species for both 
restoration and sustainable production. Considering the basic density 
values analyzed along the stem, Figure 5 confirms there is a similarity 
between B. excelsa and K. grandifoliola woods, as they form a single 
clade from the cut at 25% of the commercial stem. On the other hand, 
D. odorata has a distinct basic density characteristic, which differs from 
those of the other two species analyzed in this study.

As wood density is the result of the relationship between two phys-
ical quantities, mass and volume, this property makes it possible to 
group similar species, assign uses and applications, infer the quantifi-
cation of carbon stored in forests, and confirm this in planted forests 
(Romero et  al., 2024). Therefore, despite the species having distinct 
densities, it is possible to group them, with B. excelsa, and K. grandi-
foliola classified as medium-density wood, while D. odorata is charac-
terized as heavy-wood, according to the IAWA classification (Wheeler 
et al., 1989). This highlights the importance of choosing species based 
on their wood properties, as defined by legal frameworks, to achieve 
both ecological and economic goals in CLF systems.

Figure 4 – Average profile of the variation in basic density along the stem 
of Bertholletia excelsa, Dipteryx odorata, and Khaya grandifoliola woods, 
between September and November 2021. 
Uppercase letters compare the basic density between species and lowercase let-
ters compare the basic density along the stem of each species. Letters indicate 
the differences between the means of each collection position and the uppercase 
letters highlight the differences between species. Geometric shapes refer to the 
commercial height of each species.
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Figure 5 – Dendrogram using the average linkage method between the two native species and the exotic (Bertholletia excelsa, Dipteryx odorata, and Khaya 
grandifoliola) comparing the densities obtained along the commercial stem, in an integrated production system in Mojuí dos Campos (PA).

In addition to these wood properties, trees contribute significant-
ly to long-term carbon sequestration, both in biomass and in the soil 
(Waring et al., 2020, Reis et al., 2021). For example, in Paragominas, 
a municipality in Pará where integrated systems are widely used, im-
provements in soil properties have been observed, as the increase in 
organic matter has contributed to higher CO₂ stocks in the more su-
perficial layers of the soil profile (Fernandes et al., 2019). Therefore, the 
selection of species like B. excelsa and K. grandifoliola not only increas-
es wood production and its economic value but also contributes to the 
enhanced sequestration of carbon in both biomass and soil, further 
supporting the sustainability goals of CLF systems (Souza CR et  al., 
2023; Momolli et al., 2024).

Figure 6 presents the canonical discriminant analysis highlighting 
the differences between the basic densities of the three species. Canoni-
cal variable 1 separates D. odorata from the other two species, primarily 
due to its higher values at the 25% (10.92) and 75% (5.10) positions of the 
commercial stem. Therefore, the overall graphical analysis indicates that 
the three species are distinct according to the two canonical variables, as 
the 95% confidence ellipses do not intersect, reinforcing the separation 
of D. odorata in terms of basic density of wood along the stem.

D. odorata, despite its high basic wood density, which makes it high-
ly valuable in the timber market, also presents significant bioeconom-
ic potential due to the production of coumarin, a compound found in 
its seeds and widely used in the fragrance and food industries (Sousa 
et al., 2022). B. excelsa, being a species with prohibited timber use (Brasil, 
2006), is primarily noted for its non-timber products, such as fruits and 
seeds, which have been traded for many decades by the traditional Ama-
zon population (Souza AO et al., 2023; Medeiros et al., 2024). Therefore, 

promoting sustainable practices that consider both the ecological and 
bioeconomic potential of these species will ensure their long-term sur-
vival and contribution to Amazonian ecosystems. The CLF system offers 
an opportunity to raise awareness of the broader ecological roles of these 
species and their potential to drive sustainable practices, particularly in 
the use of non-timber products and environmental services.

One of the main challenges for both species is ensuring their eco-
logical function within the Amazon. In light of this, further research is 
needed to better understand the dynamics of nut production, its rela-

Figure 6 – Confidence ellipses for the vector of means (95%), according to 
the first two canonical (Can1 and 2) discriminant variables between the 
basic densities along the stem of the species Bertholletia excelsa, Dipteryx 
odorata, and Khaya grandifoliola, considering the densities obtained along 
the commercial stem.
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tionship with environmental factors, coumarin levels, and the ecologi-
cal implications of its harvest.

CONCLUSION
The presented results provide robust technical support to inform 

decision-making regarding the use of native and exotic species in inte-
grated production systems:
• Dipteryx odorata is the species with the highest wood density, par-

ticularly at the base of the commercial stem, making it a highly val-
ued species in the timber market. However, to capitalize on these 
opportunities and mitigate potential risks, it is essential to imple-
ment adaptive management strategies that recognize species-spe-
cific differences and promote sustainable forestry practices;

• Bertholletia excelsa exhibited a consistent basic density along the 
commercial stem and was distinguished by the highest commercial 
height among the species evaluated. While it demonstrates clear 
timber potential, its characteristics suggest high efficiency in pro-

viding environmental services, such as carbon sequestration, play-
ing a significant role in climate change mitigation;

• Khaya grandifoliola exhibited the largest DBH and the lowest den-
sity. The variation in basic density is nearly homogeneous along the 
commercial stem, a characteristic that indicates the wood’s ease of 
workability for furniture manufacturing.
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